Hh Pathway (hh + pathway)

Distribution by Scientific Domains


Selected Abstracts


Correlations between the Sonic Hedgehog Pathway and basal cell carcinoma

INTERNATIONAL JOURNAL OF DERMATOLOGY, Issue 11 2007
Omar Lupi MD
The Hedgehog (HH) family of intercellular signaling proteins has some essential functions in patterning both invertebrate and vertebrate embryos. Identified as an important regulator of segment polarity and tissue organization in flies, the HH pathway can also play a significant role in human development and in cutaneous carcinogenesis. The family received their name because when the D. melanogaster HH protein malfunctions the mutant fly ends up looking like a small prickly ball, similar to a curled up hedgehog. The Sonic hedgehog (SHH) pathway is implicated in the etiology of the most common human cancer, the basal cell carcinoma (BCC). Mutations in the receptor of SHH, the patched gene (PTCH), have been characterized in sporadic BCCs as well as those from patients with the rare genetic syndrome nevoid BCC. Human PTCH is mutated in sporadic as well as hereditary BCCs, and inactivation of this gene is probably a necessary if not sufficient step for tumorigenesis. Delineation of the biochemical pathway in which PTCH functions may lead to rational medical therapy for skin cancer and possibly other tumors. [source]


Tulp3 is a critical repressor of mouse hedgehog signaling

DEVELOPMENTAL DYNAMICS, Issue 5 2009
Don A. Cameron
Abstract Precise regulation of the morphogen sonic hedgehog (Shh) and modulation of the Shh signaling pathway is required for proper specification of cell fate within the developing limbs and neural tube, and resultant tissue morphogenesis. Tulp3 (tubby-like protein 3) is a protein of unknown function which has been implicated in nervous system development through gene knockout studies. We demonstrate here that mice lacking the Tulp3 gene develop abnormalities of both the neural tube and limbs consistent with improper regulation of Shh signaling. Tulp3,/, embryos show expansion of Shh target gene expression and display a ventralization of neural progenitor cells in the caudal neural tube. We further show that Tulp3,/,/Shh,/, compound mutant embryos resemble Tulp3 mutants, and express Shh target genes in the neural tube and limbs which are not expressed in Shh,/, embryos. This work uncovers a novel role for Tulp3 as a negative regulatory factor in the Hh pathway. Developmental Dynamics 238:1140,1149, 2009. © 2009 Wiley-Liss, Inc. [source]


Hedgehog and Fgf signaling pathways regulate the development of tphR -expressing serotonergic raphe neurons in zebrafish embryos

DEVELOPMENTAL NEUROBIOLOGY, Issue 3 2004
H. Teraoka
Abstract Serotonin (5HT) plays major roles in the physiological regulation of many behavioral processes, including sleep, feeding, and mood, but the genetic mechanisms by which serotonergic neurons arise during development are poorly understood. In the present study, we have investigated the development of serotonergic neurons in the zebrafish. Neurons exhibiting 5HT-immunoreactivity (5HT-IR) are detected from 45 h postfertilization (hpf) in the ventral hindbrain raphe, the hypothalamus, pineal organ, and pretectal area. Tryptophan hydroxylases encode rate-limiting enzymes that function in the synthesis of 5HT. As part of this study, we cloned and analyzed a novel zebrafish tph gene named tphR. Unlike two other zebrafish tph genes (tphD1 and tphD2), tphR is expressed in serotonergic raphe neurons, similar to tph genes in mammalian species. tphR is also expressed in the pineal organ where it is likely to be involved in the pathway leading to synthesis of melatonin. To better understand the signaling pathways involved in the induction of the serotonergic phenotype, we analyzed tphR expression and 5HT-IR in embryos in which either Hh or Fgf signals are abrogated. Hindbrain 5HT neurons are severely reduced in mutants lacking activity of either Ace/Fgf8 or the transcription factor Noi/Pax2.1, which regulates expression of ace/fgf8, and probably other genes encoding signaling proteins. Similarly, serotonergic raphe neurons are absent in embryos lacking Hh activity confirming a conserved role for Hh signals in the induction of these cells. Conversely, over-activation of the Hh pathway increases the number of serotonergic neurons. As in mammals, our results are consistent with the transcription factors Nk2.2 and Gata3 acting downstream of Hh activity in the development of serotonergic raphe neurons. Our results show that the pathways involved in induction of hindbrain serotonergic neurons are likely to be conserved in all vertebrates and help establish the zebrafish as a model system to study this important neuronal class. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 275,288, 2004 [source]


Small-Molecule Inhibitors of the Hedgehog Signaling Pathway as Cancer Therapeutics

CHEMMEDCHEM, Issue 4 2010
Stefan Peukert Dr.
Abstract Inhibitors of the Hedgehog (Hh) molecular signaling pathway have emerged in recent years as a promising new class of potential therapeutics for cancer treatment. Numerous drug discovery efforts have resulted in the identification of a wide variety of small molecules that target different members of this pathway, including Smoothened (Smo), Sonic hedgehog protein (Shh), and Gli1. Several Smo inhibitors have now entered human clinical trials, and successful proof-of-concept studies have been carried out in patients with defined genetic mutations in the Hh pathway. This review provides a general overview of three main topics in this rapidly expanding area: 1),the various types of biological assays and in,vivo models that have been employed for the identification and optimization of Hh pathway inhibitors; 2),Smo inhibitors reported to date, including recent clinical results where available; and 3),efforts toward the identification and characterization of inhibitors of other members of the Hh pathway. [source]