H2 Production (h2 + production)

Distribution by Scientific Domains


Selected Abstracts


[FeFe]-Hydrogenase Models: Overpotential Control for Electrocatalytic H2 Production by Tuning of the Ligand ,-Acceptor Ability

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 25 2010
Fengwei Huo
Abstract In the search for synthetic competitive catalysts that function with hydrogenase-like capability, a series of (Pyrrol-1-yl)phosphane-substituted diiron complexes [(,-pdt)Fe2(CO)5L] [pdt = propanedithiolate, L = Ph2PPyr (2), PPyr3 (4); Pyr = pyrrolyl] and [(,-pdt)Fe2(CO)4L2] [L = Ph2PPyr (3), PPyr3 (5)] were prepared as functional models for the active site of Fe-only hydrogenase. The structures of these complexes were fully characterized by spectroscopy and X-ray crystallography. In the IR spectra the CO bands for complexes 2,5 are shifted to higher energy relative to those of complexes with "traditional" phosphane ligands, such as PPh3, PMe3, and PTA (1,3,5-triaza-7-phosphaadamantane), indicating that (pyrrol-1-yl)phosphanes are poor ,-donors and better ,-acceptors. The electrochemical properties of complexes 2,5 were studied by cyclic voltammetry in CH3CN in the absence and presence of the the weak acid HOAc. The reduction potentials of these complexes show an anodic shift relative to other phosphane-substituted derivatives. All of the complexes can catalyze proton reduction from HOAc to H2 in CH3CN at their respective FeIFe0 level. Complex 4 is the most effective electrocatalyst, which catalytically generates H2 from HOAc at ,1.66 V vs. Fc+/Fc with only ca. 0.2 V overpotential in CH3CN. [source]


Microbial community structure of ethanol type fermentation in bio-hydrogen production

ENVIRONMENTAL MICROBIOLOGY, Issue 5 2007
Nanqi Ren
Summary Three continuous stirred-tank reactors (CSTRs) were used for H2 production from molasses wastewater at influent pH of 6.0,6.5 (reactor A), 5.5,6.0 (reactor B), or 4.0,4.5 (reactor C). After operation for 28 days, the microbial community formed ethanol type (C), propionate type (A) and ethanol-butyrate-mixed type (B) fermentation. The H2 production rate was the highest for ethanol type fermentation, 0.40 l (g VSS),1 day,1 or 0.45 l H2 (g COD removed),1. Microbial community dynamics and diversity were analysed using double-gradient denaturing gradient gel electrophoresis (DG-DGGE). Denaturing gradient gel electrophoresis profiles indicated that the community structures changed quickly in the first 14 days. Phylogenetic analysis indicated that the dominant bacterial groups were low G+C Gram-positive bacteria, Bacteroides, ,-Proteobacteria and Actinobacteria; ,-Proteobacteria, ,-Proteobacteria, ,-Proteobacteria and Spirochaetes were also presented as minor groups in the three reactors. H2 -producing bacteria were affiliated with Ethanoligenens, Acetanaerobacterium, Clostridium, Megasphaera, Citrobacter and Bacteroides. An ethanol-based H2 -producing bacterium, Ethanoligenens harbinense CGMCC1152, was isolated from reactor C and visualized using fluorescence in situ hybridization (FISH) to be 19% of the eubacteria in reactor C. In addition, isoenzyme activity staining for alcohol dehydrogenase (ADH) supported that the majority of ethanol-producing bacteria were affiliated with Ethanoligenens in the microbial community. [source]


Coordination Chemistry of 3-Mercapto-2-(mercaptomethyl)propanoic Acid (Dihydroasparagusic Acid) with Iron and Nickel

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 23 2006
Phillip I. Volkers
Abstract The first transition-metal complexes bearing the natural product dihydroasparagusic acid, (HSCH2)2CHCO2H, as a ligand are reported. Various coordination modes and nuclearities are demonstrated for the chelating ligand by a series of iron and nickel complexes. Fe2[(SCH2)2CHCO2H](CO)6 retains carbonyl substitution reactivity typical of Fe2(SR)2(CO)6 complexes, yet carboxy coordination to FeI was unobserved. Coupling of the carboxylic acid with amines yields the corresponding amides Fe2[(SCH2)2CHC(O)NHR](CO)6 (R = Et, gly,O,tBu). Fe2[(SCH2)2CHCO2H](CO)4(PMe3)2 catalyzes H2 production, but no better than unfunctionalized alkyl dithiolate analogs. Reactions of the ligand with NiCl2(dppe) afforded mono-, di-, and trinuclear complexes. Noteworthy is Ni3[(SCH2)2CHCO2]2(dppe)2, which features an octahedrally coordinated NiII center linked to a pair of square-planar NiII centers. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source]


Tectonic control of bioalteration in modern and ancient oceanic crust as evidenced by carbon isotopes

ISLAND ARC, Issue 1 2006
Harald Furnes
Abstract We review the carbon-isotope data for finely disseminated carbonates from bioaltered, glassy pillow rims of basaltic lava flows from in situ slow- and intermediate-spreading oceanic crust of the central Atlantic Ocean (CAO) and the Costa Rica Rift (CRR). The ,13C values of the bioaltered glassy samples from the CAO show a large range, between ,17 and +3, (Vienna Peedee belemnite standard), whereas those from the CRR define a much narrower range, between ,17, and ,7,. This variation can be interpreted as the product of different microbial metabolisms during microbial alteration of the glass. In the present study, the generally low ,13C values (less than ,7,) are attributed to carbonate precipitated from microbially produced CO2 during oxidation of organic matter. Positive ,13C values >0, likely result from lithotrophic utilization of CO2 by methanogenic Archaea that produce CH4 from H2 and CO2. High production of H2 at the slow-spreading CAO crust may be a consequence of fault-bounded, high-level serpentinized peridotites near or on the sea floor, in contrast to the CRR crust, which exhibits a layer-cake pseudostratigraphy with much less faulting and supposedly less H2 production. A comparison of the ,13C data from glassy pillow margins in two ophiolites interpreted to have formed at different spreading rates supports this interpretation. The Jurassic Mirdita ophiolite complex in Albania shows a structural architecture similar to that of the slow-spreading CAO crust, with a similar range in ,13C values of biogenic carbonates. The Late Ordvician Solund,Stavfjord ophiolite complex in western Norway exhibits structural and geochemical evidence for evolution at an intermediate-spreading mid-ocean ridge and displays ,13C signatures in biogenic carbonates similar to those of the CRR. Based on the results of this comparative study, it is tentatively concluded that the spreading rate-dependent tectonic evolution of oceanic lithosphere has a significant control on the evolution of microbial life and hence on the ,13C biosignatures preserved in disseminated biogenic carbonates in glassy, bioaltered lavas. [source]


Kinetics of the thermal dissociation of ZnO exposed to concentrated solar irradiation using a solar-driven thermogravimeter in the 1800,2100 K range

AICHE JOURNAL, Issue 6 2009
Lothar O. Schunk
Abstract The two-step H2O-splitting thermochemical cycle based on the Zn/ZnO redox reactions is considered for solar H2 production, comprising the endothermal dissociation of ZnO followed by the exothermal hydrolysis of Zn. A solar-driven thermogravimeter, in which a packed-bed of ZnO particles is directly exposed to concentrated solar radiation at a peak solar concentration ratio of 2400 suns while its weight loss is continuously monitored, was applied to measure the thermal dissociation rate in a set-up closely approximating the heat and mass transfer characteristics of solar reactors. Isothermal thermogravimetric runs were performed in the range 1834,2109 K and fitted to a zero-order Arrhenius rate law with apparent activation energy 361 ± 53 kJ mol,1 K,1 and frequency factor 14.03 × 106 ± 2.73 × 106 kg m,2 s,1. Application of L,vov's kinetic expression for solid decomposition along with a convective mass transport correlation yielded kinetic parameters in close agreement with those derived from experimental data. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Structure and composition of CO2/H2 and CO2/H2/C3H8 hydrate in relation to simultaneous CO2 capture and H2 production

AICHE JOURNAL, Issue 6 2009
Rajnish Kumar
Gas hydrates from a (40/60 mol %) CO2/H2 mixture, and from a (38.2/59.2/2.6 mol %) CO2/H2/C3H8 mixture, were synthesized using ice powder. The gas uptake curves were determined from pressure drop measurements and samples were analyzed using spectroscopic techniques to identify the structure and determine the cage occupancies. Powder X-ray diffraction (PXRD) analysis at ,110°C was used to determine the crystal structure. From the PXRD measurement it was found that the CO2/H2 hydrate is structure I and shows a self-preservation behavior similar to that of CO2 hydrate. The ternary gas mixture was found to form pure structure II hydrate at 3.8 MPa. We have applied attenuated total reflection infrared spectroscopic analysis to measure the CO2 distribution over the large and small cavities. 1H MAS NMR and Raman were used to follow H2 enclathration in the small cages of structure I, as well as structure II hydrate. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Optimization of glutamate concentration and pH for H2 production from volatile fatty acids by Rhodopseudomonas capsulata

LETTERS IN APPLIED MICROBIOLOGY, Issue 6 2005
X.-Y. Shi
Abstract Aims:, This study attempted to employ response surface methodology (RSM) to evaluate the effects of glutamate concentration and pH on H2 production from volatile fatty acids by Rhodopseudomonas capsulata. Methods and Results:, A mixture of acetate, propionate and butyrate was used as a carbon source for the H2 production by R. capsulata. The H2 yield and H2 production rate were strongly affected by the glutamate concentration, pH and their interaction. The predicted maximum H2 yield of 0·534 was obtained when glutamate concentration and pH were 6·56 mmol l,1 and 7·29 respectively. On the contrary, the maximum H2 production rate of 18·72 ml l,1 h,1 was achieved at a glutamate concentration of 7·01 mmol l,1 and pH 7·31. Conclusions:, Taking H2 yield and H2 production rate together into account, a glutamate concentration of 6·56,7·01 mmol l,1 and pH of 7·29,7·31 should be selected for H2 production from a mixture of acetate, propionate and butyrate by R. capsulata. Significance and Impact of the Study:, The RSM was a useful tool for maximizing H2 production by photosynthetic bacteria (PSB). [source]


Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale-up

PHYSIOLOGIA PLANTARUM, Issue 1 2007
Ben Hankamer
The development of clean borderless fuels is of vital importance to human and environmental health and global prosperity. Currently, fuels make up approximately 67% of the global energy market (total market = 15 TW year,1) (Hoffert et al. 1998). In contrast, global electricity demand accounts for only 33% (Hoffert et al. 1998). Yet, despite the importance of fuels, almost all CO2 free energy production systems under development are designed to drive electricity generation (e.g. clean-coal technology, nuclear, photovoltaic, wind, geothermal, wave and hydroelectric). In contrast, and indeed almost uniquely, biofuels also target the much larger fuel market and so in the future will play an increasingly important role in maintaining energy security (Lal 2005). Currently, the main biofuels that are at varying stages of development include bio-ethanol, liquid carbohydrates [e.g. biodiesel or biomass to liquid (BTL) products], biomethane and bio-H2. This review is focused on placing bio-H2 production processes into the context of the current biofuels market and summarizing advances made both at the level of bioengineering and bioreactor design. [source]


The Diplomonad Fish Parasite Spironucleus vortens Produces Hydrogen

THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 5 2010
CORALIE O.M. MILLET
ABSTRACT. The diplomonad fish parasite Spironucleus vortens causes major problems in aquaculture of ornamental fish, resulting in severe economic losses in the fish farming industry. The strain of S. vortens studied here was isolated from an angelfish and grown in Keister's modified TY-I-S33 medium. A membrane-inlet mass spectrometer was employed to monitor, in a closed system, O2, CO2, and H2. When introduced into air-saturated buffer, S. vortens rapidly consumed O2 at the average rate of 62±4 nmol/min/107 cells and CO2 was produced at 75±11 nmol/min/107 cells. Hydrogen production began under microaerophilic conditions ([O2]=33.±15 ,M) at a rate of 77±7 nmol/min/107 cells. Hydrogen production was inhibited by 62% immediately after adding 150 ,M KCN to the reaction vessel, and by 50% at 0.24 ,M CO, suggesting that an Fe-only hydrogenase is responsible for H2 production. Metronidazole (1 mM) inhibited H2 production by 50%, while CO2 production was not affected. This suggests that metronidazole may be reduced by an enzyme of the H2 pathway, thus competing for electrons with H+. [source]


Catalysts for water,gas shift processing of coal-derived syngases,

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 4 2010
San Shwe Hla
Abstract Although the gasification of coal is an efficient means of producing syngas, the carbon content of coal is such that gasification produces significantly higher ratios of carbon oxides to hydrogen than those obtained by the steam reforming of natural gas. The CO:H2 ratio can be adjusted, and more hydrogen produced, by the subsequent application of the water,gas shift (WGS) reaction. This article presents a review of technologies associated with the catalytic WGS reaction in a fixed-bed reactor that might be incorporated into a coal gasification-based system for H2 production with CO2 capture. The main output from this review is the identification of key project areas requiring further research. The performance of existing, commercially available catalysts,designed for use in natural gas reforming processes,with coal-derived syngases is an important aspect of developing technologies for coal-based H2 production. This article presents an experimental assessment of the performance of selected commercially available WGS catalysts, two high-temperature catalysts (HT01 and HT02) and a sour shift catalyst (SS01), with such syngases. For the three commercial catalysts investigated in this study, CO reaction order is found to be in a range of 0.75,1. The effect of changes in H2O concentration over HT01 is insignificant, whereas H2O reaction orders determined using HT02 and SS01 are found to be significantly positive even at high H2O:C ratios. The CO conversion rate is significantly reduced by increasing CO2 concentration, whereas increasing H2 concentration also causes a slight reduction in CO conversion rate for the three commercial catalysts investigated. Copyright © 2010 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


Membrane reactor modelling, validation and simulation for the WGS reaction using metal doped silica membranes

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 1 2010
S. Battersby
Abstract In this work, a Matlab Simulink© model was developed to analyse and predict the performance of a metal doped silica membrane reactor for H2 production via both the high and low temperature water gas shift reaction. An activated transport model for mixed gas separation with combined reaction was developed to model the effects within a membrane reactor unit. The membrane reactor was modelled as a number of perfectly mixed compartments containing a catalyst bed and a gas selective membrane. The combined model provided a good fit to experimentally measured results for higher conversions up to equilibrium, which is generally the case for industrial applications. Simulation results showed that H2 separation and H2 recovery improved with pressure, due to the H2 concentration driving force across the membrane. For a single stage membrane reactor unit, a maximum conversion of 93% could be achieved with a H2 recovery rate of 95%. In addition, the membrane reactor efficiency increased at higher temperatures and lower H2O:CO feed ratios, allowing for CO conversion improvements by the membrane reactor. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


An electron-flow model can predict complex redox reactions in mixed-culture fermentative BioH2: Microbial ecology evidence

BIOTECHNOLOGY & BIOENGINEERING, Issue 4 2009
Hyung-Sool Lee
Abstract We developed the first model for predicting community structure in mixed-culture fermentative biohydrogen production using electron flows and NADH2 balances. A key assumption of the model is that H2 is produced only via the pyruvate decarboxylation-ferredoxin-hydrogenase pathway, which is commonly the case for fermentation by Clostridium and Ethanoligenens species. We experimentally tested the model using clone libraries to gauge community structures with mixed cultures in which we did not pre-select for specific bacterial groups, such as spore-formers. For experiments having final pHs 3.5 and 4.0, where H2 yield and soluble end-product distribution were distinctly different, we established stoichiometric reactions for each condition by using experimentally determined electron equivalent balances. The error in electron balancing was only 3% at final pH 3.5, in which butyrate and acetate were dominant organic products and the H2 yield was 2.1,mol,H2/mol,glucose. Clone-library analysis showed that clones affiliated with Clostridium sp. BL-22 and Clostridium sp. HPB-16 were dominant at final pH 3.5. For final pH 4.0, the H2 yield was 0.9,mol,H2/mol,glucose, ethanol, and acetate were the dominant organic products, and the electron balance error was 13%. The significant error indicates that a second pathway for H2 generation was active. The most abundant clones were affiliated with Klebsiella pneumoniae, which uses the formate-cleavage pathway for H2 production. Thus, the clone-library analyses confirmed that the model predictions for when the pyruvate decarboxylation-ferredoxin-hydrogenase pathway was (final pH 3.5) or was not (final pH 4.0) dominant. With the electron-flow model, we can easily assess the main mechanisms for H2 formation and the dominant H2 -producing bacteria in mixed-culture fermentative bioH2. Biotechnol. Bioeng. 2009; 104: 687,697 © 2009 Wiley Periodicals, Inc. [source]


Evaluation of metabolism using stoichiometry in fermentative biohydrogen

BIOTECHNOLOGY & BIOENGINEERING, Issue 3 2009
Hyung-Sool Lee
Abstract We first constructed full stoichiometry, including cell synthesis, for glucose mixed-acid fermentation at different initial substrate concentrations (0.8,6 g-glucose/L) and pH conditions (final pH 4.0,8.6), based on experimentally determined electron-equivalent balances. The fermentative bioH2 reactions had good electron closure (,9.8 to +12.7% for variations in glucose concentration and ,3 to +2% for variations in pH), and C, H, and O errors were below 1%. From the stoichiometry, we computed the ATP yield based on known fermentation pathways. Glucose-variation tests (final pH 4.2,5.1) gave a consistent fermentation pattern of acetate,+,butyrate,+,large H2, while pH significantly shifted the catabolic pattern: acetate,+ butyrate,+,large H2 at final pH 4.0, acetate,+,ethanol,+ modest H2 at final pH 6.8, and acetate,+,lactate,+,trivial H2 at final pH 8.6. When lactate or propionate was a dominant soluble end product, the H2 yield was very low, which is in agreement with the theory that reduced ferredoxin (Fdred) formation is required for proton reduction to H2. Also consistent with this hypothesis is that high H2 production correlated with a high ratio of butyrate to acetate. Biomass was not a dominant sink for electron equivalents in H2 formation, but became significant (12%) for the lowest glucose concentration (i.e., the most oligotrophic condition). The fermenting bacteria conserved energy similarly at ,3 mol ATP/mol glucose (except 0.8 g-glucose/L, which had ,3.5 mol ATP/mol glucose) over a wide range of H2 production. The observed biomass yield did not correlate with ATP conservation; low observed biomass yields probably were caused by accelerated rates of decay or production of soluble microbial products. Biotechnol. Bioeng. 2009; 102: 749,758. © 2008 Wiley Periodicals, Inc. [source]


Kinetic modeling of light limitation and sulfur deprivation effects in the induction of hydrogen production with Chlamydomonas reinhardtii: Part I. Model development and parameter identification

BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2009
Swanny Fouchard
Abstract Chlamydomonas reinhardtii is a green microalga capable of turning its metabolism towards H2 production under specific conditions. However this H2 production, narrowly linked to the photosynthetic process, results from complex metabolic reactions highly dependent on the environmental conditions of the cells. A kinetic model has been developed to relate culture evolution from standard photosynthetic growth to H2 producing cells. It represents transition in sulfur-deprived conditions, known to lead to H2 production in Chlamydomonas reinhardtii, and the two main processes then induced which are an over-accumulation of intracellular starch and a progressive reduction of PSII activity for anoxia achievement. Because these phenomena are directly linked to the photosynthetic growth, two kinetic models were associated, the first (one) introducing light dependency (Haldane type model associated to a radiative light transfer model), the second (one) making growth a function of available sulfur amount under extracellular and intracellular forms (Droop formulation). The model parameters identification was realized from experimental data obtained with especially designed experiments and a sensitivity analysis of the model to its parameters was also conducted. Model behavior was finally studied showing interdependency between light transfer conditions, photosynthetic growth, sulfate uptake, photosynthetic activity and O2 release, during transition from oxygenic growth to anoxic H2 production conditions. Biotechnol. Bioeng. 2009;102: 232,245. © 2008 Wiley Periodicals, Inc. [source]


Effect of inhibition treatment, type of inocula, and incubation temperature on batch H2 production from organic solid waste

BIOTECHNOLOGY & BIOENGINEERING, Issue 3 2006
Idania Valdez-Vazquez
Abstract Two types of induction treatments (heat-shock pretreatment, HSP, and acetylene, Ac), inocula (meso and thermophilic) and incubation temperatures (37 and 55°C) were tested according to a full factorial design 23 with the aim of assessing their effects on cumulative H2 production (PH, mmol H2/mini-reactor), initial H2 production rate (Ri,H, µmol H2/(g VSi,×,h)), lag time (Tlag, h), and metabolites distribution when fermenting organic solid waste with an undefined anerobic consortia in batch mini-reactors. Type of inocula did not have a significant effect on PH, Tlag, and Ri,H except for organic acids production: mini-reactors seeded with thermophilic inocula had the highest organic acid production. Concerning the induction treatment, it was found that on the average Ac only affected in a positive way the PH and Tlag. Thus, PH in Ac-inhibited units (6.97) was 20% larger than those in HSP-inhibited units (5.77). Also, Ac favored a shorter Tlag for PH in comparison with HSP (180 vs. 366). Additionally, a positive correlation was found between H2 and organic acid production. In contrast, solvent concentration in heat-shocked mini-reactors were slightly higher than in reactors spiked with Ac. Regarding the incubation temperature, on the average mesophilic temperature affected in a positive and very significant way PH (10.07 vs. 2.67) and Ri,H (2.43 vs. 0.76) with minimum Tlag (87 vs. 459). The positive correlation between H2 and organic acids production was found again. Yet, incubation temperature did not seem to affect solvent production. A strong interaction was observed between induction treatment and incubation temperature. Thus, Ac-inhibited units showed higher values of PH and Ri,H than that HSP-inhibited units only under thermophilic incubation. Contrary to this, HSP-inhibited units showed the highest values of PH and Ri,H only under mesophilic conditions. Therefore, the superiority of an induction treatment seems to strongly depend on the incubation temperature. © 2006 Wiley Periodicals, Inc. [source]


Multicomponent cellulase production by Cellulomonas biazotea NCIM-2550 and its applications for cellulosic biohydrogen production

BIOTECHNOLOGY PROGRESS, Issue 2 2010
Ganesh D. Saratale
Abstract Among four cellulolytic microorganisms examined, Cellulomonas biazotea NCIM-2550 can grow on various cellulosic substrates and produce reducing sugar. The activity of cellulases (endoglucanase, exoglucanase, and cellobiase), xylanase, amylase, and lignin class of enzymes produced by C. biazotea was mainly present extracellularly and the enzyme production was dependent on cellulosic substrates (carboxymethyl cellulose [CMC], sugarcane bagasse [SCB], and xylan) used for growth. Effects of physicochemical conditions on cellulolytic enzyme production were systematically investigated. Using MnCl2 as a metal additive significantly induces the cellulase enzyme system, resulting in more reducing sugar production. The efficiency of fermentative conversion of the hydrolyzed SCB and xylan into clean H2 energy was examined with seven H2 -producing pure bacterial isolates. Only Clostridiumbutyricum CGS5 exhibited efficient H2 production performance with the hydrolysate of SCB and xylan. The cumulative H2 production and H2 yield from using bagasse hydrolysate (initial reducing sugar concentration = 1.545 g/L) were approximately 72.61 mL/L and 2.13 mmol H2/g reducing sugar (or 1.91 mmol H2/g cellulose), respectively. Using xylan hydrolysate (initial reducing sugar concentration = 0.345 g/L) as substrate could also attain a cumulative H2 production and H2 yield of 87.02 mL/L and 5.03 mmol H2/g reducing sugar (or 4.01 mmol H2/g cellulose), respectively. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]


The fermentation stoichiometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on hydrogen production

BIOTECHNOLOGY PROGRESS, Issue 4 2009
Sarah A. Munro
Abstract The hyperthermophilic bacterium, Thermotoga neapolitana, has potential for use in biological hydrogen (H2) production. The objectives of this study were to (1) determine the fermentation stoichiometry of Thermotoga neapolitana and examine H2 production at various growth temperatures, (2) investigate the effect of oxygen (O2) on H2 production, and (3) determine the cause of glucose consumption inhibition. Batch fermentation experiments were conducted at temperatures of 60, 65, 70, 77, and 85°C to determine product yield coefficients and volumetric productivity rates. Yield coefficients did not show significant changes with respect to growth temperature and the rate of H2 production reached maximum levels in both the 77°C and 85°C experiments. The fermentation stoichiometry for T. neapolitana at 85°C was 3.8 mol H2, 2 mol CO2, 1.8 mol acetate, and 0.1 mol lactate produced per mol of glucose consumed. Under microaerobic conditions H2 production did not increase when compared to anaerobic conditions, which supports other evidence in the literature that T. neapolitana does not produce H2 through microaerobic metabolism. Glucose consumption was inhibited by a decrease in pH. When pH was adjusted with buffer addition cultures completely consumed available glucose. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source]


Hydrogen Production from a Fluidized-bed Coal Gasifier with In Situ Fixation of CO2,Part I: Numerical Model

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 2 2008
J. Lu
Abstract In order to attempt to eliminate global warming effects, it is highly desirable that new technologies with lower or zero emission of CO2 to the environment are developed. In this work, a high-pressure fluidized-bed coal gasifier for H2 production with in situ fixation of CO2 is simulated by a comprehensive two-dimensional model. The Eddy Dissipation Concept (EDC) model is first adopted in the pulverized coal gasification model to simultaneously describe the turbulent mixing and detailed chemical kinetics. The developed model is verified with experimental results. The simulated concentrations for the gas product agree well with the experimental data. The simulated distributions for gas temperature and velocity correlate well with the reaction mechanism and experimental phenomena. [source]


Autothermal Catalytic Partial Oxidation of Glycerol to Syngas and to Non-Equilibrium Products

CHEMSUSCHEM CHEMISTRY AND SUSTAINABILITY, ENERGY & MATERIALS, Issue 1 2009
David
Abstract Glycerol, a commodity by-product of the biodiesel industry, has value as a fuel feedstock and chemical intermediate. It is also a simple prototype of sugars and carbohydrates. Through catalytic partial oxidation (CPOx), glycerol can be converted into syngas without the addition of process heat. We explored the CPOx of glycerol using a nebulizer to mix droplets with air at room temperature for reactive flash volatilization. Introducing this mixture over a noble-metal catalyst oxidizes the glycerol at temperatures over 600,°C in 30,90,ms. Rhodium catalysts produce equilibrium selectivity to syngas, while platinum catalysts produce mainly autothermal non-equilibrium products. The addition of water to the glycerol increases the selectivity to H2 by the water gas shift reaction and reduces non-equilibrium products. However, water also quenches the reaction, resulting in a maximum in H2 production at a steam/carbon ratio of 2:3 over a Rh-Ce catalyst. Glycerol without water produces a variety of chemicals over Pt, including methylglyoxal, hydroxyacetone, acetone, acrolein, acetaldehyde, and olefins. [source]