Alternative Version (alternative + version)

Distribution by Scientific Domains


Selected Abstracts


Optimizing the point spread function in phase-encoded magnetic resonance microscopy

CONCEPTS IN MAGNETIC RESONANCE, Issue 1 2004
A.G. Webb
Abstract Three-dimensional phase-encoded magnetic resonance microscopy is the most promising method for obtaining images with isotropic spatial resolutions on the order of a few micrometers. The attainable spatial resolution is limited by the available gradient strength (Gmax) and the molecular self-diffusion coefficient (D) of the sample. In this study, numerical simulations in the microscopic-size regime are presented in order to show that for given values of Gmax and D, there exists an optimum number of phase-encoding steps that maximize the spatial resolution in terms of minimizing the full-width at half-maximum (FWHM) of the image point spread function (PSF). Unlike the case of "macroscopic" imaging, in which diffusion plays an insignificant role in determining spatial resolution, acquiring data beyond this optimal value actually degrades the image PSF. An alternative version of phase encoding, using a variable phase-encoding time rather than a variable gradient strength, is analyzed in terms of improvements in the image PSF and/or reductions in the data acquisition time for a given spatial resolution. © 2004 Wiley Periodicals, Inc. Concepts Magn Reson 22A: 25,36, 2004. [source]


Biogeochemical modelling of the rise in atmospheric oxygen

GEOBIOLOGY, Issue 4 2006
M. W. CLAIRE
ABSTRACT Understanding the evolution of atmospheric molecular oxygen levels is a fundamental unsolved problem in Earth's history. We develop a quantitative biogeochemical model that simulates the Palaeoproterozoic transition of the Earth's atmosphere from a weakly reducing state to an O2 -rich state. The purpose is to gain an insight into factors that plausibly control the timing and rapidity of the oxic transition. The model uses a simplified atmospheric chemistry (parameterized from complex photochemical models) and evolving redox fluxes in the Earth system. We consider time-dependent fluxes that include organic carbon burial and associated oxygen production, reducing gases from metamorphic and volcanic sources, oxidative weathering, and the escape of hydrogen to space. We find that the oxic transition occurs in a geologically short time when the O2 -consuming flux of reducing gases falls below the flux of organic carbon burial that produces O2. A short timescale for the oxic transition is enhanced by a positive feedback due to decreasing destruction of O2 as stratospheric ozone forms, which is captured in our atmospheric chemistry parameterization. We show that one numerically self-consistent solution for the rise of O2 involves a decline in flux of reducing gases driven by irreversible secular oxidation of the crust caused by time-integrated hydrogen escape to space in the preoxic atmosphere, and that this is compatible with constraints from the geological record. In this model, the timing of the oxic transition is strongly affected by buffers of reduced materials, particularly iron, in the continental crust. An alternative version of the model, where greater fluxes of reduced hydrothermal cations from the Archean seafloor consume O2, produces a similar history of O2 and CH4. When climate and biosphere feedbacks are included in our model of the oxic transition, we find that multiple ,Snowball Earth' events are simulated under certain circumstances, as methane collapses and rises repeatedly before reaching a new steady-state. [source]


Simultaneous Atlantic,Pacific blocking and the Northern Annular Mode

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 636 2008
Tim Woollings
Abstract A synoptic situation termed ,high-latitude blocking' (HLB) is shown to occur frequently in both the Atlantic and Pacific sectors, and to result in flow anomalies very similar to those associated with the negative phase of the Northern Annular Mode (NAM) in the respective sector. There is a weak but significant link between the occurrence of HLB in the two sectors, with Atlantic HLB tending to lead Pacific HLB by 1,3 days. This link arises from rare events in which both sectors are almost simultaneously affected by a large-scale wave-breaking event which distorts the polar trough over Northern Canada. In several cases the tropospheric wave-breaking occurs in tandem with a large-scale disturbance of the stratospheric polar vortex. There is, therefore, a physical link between the Atlantic and Pacific sectors, but analysis suggests that this does not contribute to determining the pattern of the NAM, as conventionally defined from monthly mean data. However, an alternative version of the NAM, derived directly from daily data, does appear to reflect this physical link. These conflicting results highlight the sensitivity of the NAM to the period over which data are averaged. Copyright © 2008 Royal Meteorological Society [source]


The inclusion of exogenous variables in functional autoregressive ozone forecasting

ENVIRONMETRICS, Issue 7 2002
Julien Damon
Abstract In this article, we propose a new technique for ozone forecasting. The approach is functional, that is we consider stochastic processes with values in function spaces. We make use of the essential characteristic of this type of phenomenon by taking into account theoretically and practically the continuous time evolution of pollution. One main methodological enhancement of this article is the incorporation of exogenous variables (wind speed and temperature) in those models. The application is carried out on a six-year data set of hourly ozone concentrations and meteorological measurements from Béthune (France). The study examines the summer periods because of the higher values observed. We explain the non-parametric estimation procedure for autoregressive Hilbertian models with or without exogenous variables (considering two alternative versions in this case) as well as for the functional kernel model. The comparison of all the latter models is based on up-to-24 hour-ahead predictions of hourly ozone concentrations. We analyzed daily forecast curves upon several criteria of two kinds: functional ones, and aggregated ones where attention is put on the daily maximum. It appears that autoregressive Hilbertian models with exogenous variables show the best predictive power. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Designing merger agreements to ease merger integration

GLOBAL BUSINESS AND ORGANIZATIONAL EXCELLENCE, Issue 1 2008
Sascha L. Schmidt
Many mergers fail as a result of difficulties in the integration phase. Such problems can arise when the corporate strategy concept of the merged firm does not build in a meaningful way on the actual corporate strategies of the predecessor organizations. Primarily addressed to practitioners, this article introduces the framework of a "merger scan" that enables executives negotiating a deal to analyze whether alternative versions of the new corporate strategy strike an optimal balance between the desire for continuity and the need for strategic renewal. Applying this framework helps executives allocate sufficient time and attention to those integration aspects that involve breaking with the directions of the predecessor firms and thus require change. © 2008 Wiley Periodicals, Inc. [source]