Alternate Pathways (alternate + pathway)

Distribution by Scientific Domains


Selected Abstracts


Analysis of Campylobacter jejuni capsular loci reveals multiple mechanisms for the generation of structural diversity and the ability to form complex heptoses

MOLECULAR MICROBIOLOGY, Issue 1 2005
Andrey V. Karlyshev
Summary We recently demonstrated that Campylobacter jejuni produces a capsular polysaccharide (CPS) that is the major antigenic component of the classical Penner serotyping system distinguishing Campylobacter into >60 groups. Although the wide variety of C. jejuni serotypes are suggestive of structural differences in CPS, the genetic mechanisms of such differences are unknown. In this study we sequenced biosynthetic cps regions, ranging in size from 15 to 34 kb, from selected C. jejuni strains of HS:1, HS:19, HS:23, HS:36, HS:23/36 and HS:41 serotypes. Comparison of the determined cps sequences of the HS:1, HS:19 and HS:41 strains with the sequenced strain, NCTC11168 (HS:2), provides evidence for multiple mechanisms of structural variation including exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and contingency gene variation. In contrast, the HS:23, HS:36 and HS:23/36 cps sequences were highly conserved. We report the first detailed structural analysis of 81-176 (HS:23/36) and G1 (HS:1) and refine the previous structural interpretations of the HS:19, HS:23, HS:36 and HS:41 serostrains. For the first time, we demonstrate the commonality and function of a second heptose biosynthetic pathway for Campylobacter CPS independent of the pathway for lipooligosaccharide (LOS) biosynthesis and identify a novel heptosyltransferase utilized by this alternate pathway. Furthermore, we show the retention of two functional heptose isomerases in Campylobacter and the sharing of a phosphatase for both LOS and CPS heptose biosynthesis. [source]


Digestive mutualism, an alternate pathway in plant carnivory

OIKOS, Issue 1 2003
B. Anderson
First page of article [source]


Multiple meanings of self harm: A critical review

INTERNATIONAL JOURNAL OF MENTAL HEALTH NURSING, Issue 3 2003
Margaret McAllister
ABSTRACT: The issue of self harm is a popular inclusion in various contemporary journals focusing on health and in particular women's health. This paper seeks to condense, critically analyse and more simply explain selected literature in order to raise awareness of the multiple ways of understanding self harm. Raised awareness may be a useful strategy in thinking about self harm in novel ways and thus providing alternate pathways for responding to the individual and society. [source]


DNA gyrase requirements distinguish the alternate pathways of Mu transposition

MOLECULAR MICROBIOLOGY, Issue 2 2003
Tanya D. Sokolsky
Summary The MuA transposase mediates transposition of bacteriophage Mu through two distinct mechanisms. The first integration event following infection occurs through a non-replicative mechanism. In contrast, during lytic growth, multiple rounds of replicative transposition amplify the phage genome. We have examined the influence of gyrase and DNA supercoiling on these two transposition pathways using both a gyrase-inhibiting drug and several distinct gyrase mutants. These experiments reveal that gyrase activity is not essential for integration; both lysogens and recombination intermediates are detected when gyrase is inhibited during Mu infection. In contrast, gyrase inhibition causes severe defects in replicative transposition. In two of the mutants, as well as in drug-treated cells, replicative transposition is almost completely blocked. Experiments probing for formation of MuA,DNA complexes in vivo reveal that this block occurs very early, during assembly of the transposase complex required for the catalytic steps of recombination. The findings establish that DNA structure-based signals are used differently for integrative and replicative transposition. We propose that transposase assembly, the committed step for recombination, has evolved to depend on different DNA /architectural signals to control the reaction outcome during these two distinct phases of the phage life cycle. [source]


Signaling satellite-cell activation in skeletal muscle: Markers, models, stretch, and potential alternate pathways

MUSCLE AND NERVE, Issue 3 2005
Ashley C. Wozniak BSc
Abstract Activation of skeletal muscle satellite cells, defined as entry to the cell cycle from a quiescent state, is essential for normal growth and for regeneration of tissue damaged by injury or disease. This review focuses on early events of activation by signaling through nitric oxide and hepatocyte growth factor, and by mechanical stimuli. The impact of various model systems used to study activation and the regulation of satellite-cell quiescence are placed in the context of activation events in other tissues, concluding with a speculative model of alternate pathways signaling satellite-cell activation. Muscle Nerve, 2005 [source]


A Computational Study of Feedback Effects on Signal Dynamics in a Mitogen-Activated Protein Kinase (MAPK) Pathway Model

BIOTECHNOLOGY PROGRESS, Issue 2 2001
Anand R. Asthagiri
Exploiting signaling pathways for the purpose of controlling cell function entails identifying and manipulating the information content of intracellular signals. As in the case of the ubiquitously expressed, eukaryotic mitogen-activated protein kinase (MAPK) signaling pathway, this information content partly resides in the signals' dynamical properties. Here, we utilize a mathematical model to examine mechanisms that govern MAPK pathway dynamics, particularly the role of putative negative feedback mechanisms in generating complete signal adaptation, a term referring to the reset of a signal to prestimulation levels. In addition to yielding adaptation of its direct target, feedback mechanisms implemented in our model also indirectly assist in the adaptation of signaling components downstream of the target under certain conditions. In fact, model predictions identify conditions yielding ultra-desensitization of signals in which complete adaptation of target and downstream signals culminates even while stimulus recognition (i.e., receptor-ligand binding) continues to increase. Moreover, the rate at which signal decays can follow first-order kinetics with respect to signal intensity, so that signal adaptation is achieved in the same amount of time regardless of signal intensity or ligand dose. All of these features are consistent with experimental findings recently obtained for the Chinese hamster ovary (CHO) cell lines (Asthagiri et al., J. Biol. Chem.1999, 274, 27119,27127). Our model further predicts that although downstream effects are independent of whether an enzyme or adaptor protein is targeted by negative feedback, adaptor-targeted feedback can "back-propagate" effects upstream of the target, specifically resulting in increased steady-state upstream signal. Consequently, where these upstream components serve as nodes within a signaling network, feedback can transfer signaling through these nodes into alternate pathways, thereby promoting the sort of signaling cross-talk that is becoming more widely appreciated. [source]


Systemic humoral immunity to non-typeable Haemophilus influenzae

CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2008
P. T. King
Summary Non-typeable Haemophilus influenzae (NTHi) is a major cause of respiratory but rarely systemic infection. The host defence to this bacterium has not been well defined in patients with chronic airway infection. The aim of this study was to assess the effect of humoral immunity in host defence to NTHi. Responses were measured in control and bronchiectasis subjects who had recurrent bronchial infection. Antibody and complement-mediated killing was assessed by incubating NTHi with serum and the role of the membrane,attack complex and classical/alternate pathways of complement activation measured. The effect of one strain to induce protective immunity against other strains was assessed. The effect of antibody on granulocyte intracellular killing of NTHi was also measured. The results showed that both healthy control subjects and bronchiectasis patients all had detectable antibody to NTHi of similar titre. Both groups demonstrated effective antibody/complement-mediated killing of different strains of NTHi. This killing was mediated through the membrane,attack complex and the classical pathway of complement activation. Immunization of rabbits with one strain of NTHi resulted in protection from other strains in vitro. Antibody activated granulocytes to kill intracellular bacteria. These findings may explain why NTHi rarely causes systemic disease in patients with chronic respiratory mucosal infection and emphasize the potential importance of cellular immunity against this bacterium. [source]