Alteration Zones (alteration + zone)

Distribution by Scientific Domains


Selected Abstracts


Geophysical exploration for interlayer slip breccia gold deposits: example from Pengjiakuang gold deposit, Shandong Province, China

GEOPHYSICAL PROSPECTING, Issue 2 2004
Z. Qingdong
ABSTRACT Interlayer slipping breccia-type gold deposit , a new type of gold deposit, defined recently in the northern margin of the Jiaolai Basin, Shandong Province, China , occurs in interlayer slip faults distributed along the basin margin. It has the features of large orebody thickness (ranging from 14 m to 46 m, with an average thickness of 30 m), shallow embedding (0,50 m thickness of cover), low tenor of gold ore (ranging from 3 g/t to 5 g/t), easy mining and ore dressing. This type of gold deposit has promising metallogenic forecasting and potential for economic exploitation. A ground gamma-ray survey in the Pengjiakuang gold-ore district indicates that the potassium/thorium ratio is closely related to the mineralization intensity, i.e. the larger the potassium/thorium ratio, the higher the mineralization. The gold mineralized alteration zone was defined by a potassium/thorium ratio of 0.35. A seismic survey confirms the location of the top and bottom boundaries and images various features within the Pengjiakuang gold mineralization belt. The gold-bearing shovel slipped belt dips to the south at an angle of 50,55° at the surface and 15,20° at depth. The seismic profile is interpreted in terms of a structural band on the seismic section characterized by a three-layered model. The upper layer is represented by weakly discontinuous reflections that represent the overlying conglomerates. A zone of stronger reflections representing the interlayer slip fault (gold-bearing mineralized zone) is imaged within the middle of the section, while the strongest reflections are in the lower part of the section and represent metamorphic rocks at depth. At the same time, the seismic reflection survey confirms the existence of a granite body at depth, indicating that ore-forming fluids may be related to the granite. A CSAMT survey showed that the gold-bearing mineralized zone is a conductive layer and contains a low-resistivity anomaly ranging from 2 ,m to 200 ,m. [source]


Variations in Chemical Composition of Clay Minerals and Magnetic Susceptibility of Hydrothermally Altered Rocks in the Hishikari Epithermal Gold Deposit, SW Kyushu, Japan

RESOURCE GEOLOGY, Issue 1 2008
Hiroyasu Murakami
Abstract Hydrothermal alteration, involving chiefly chlorite and illite, is extensively distributed within host rocks of the Pleistocene Hishikari Lower Andesites (HLA) and the Cretaceous Shimanto Supergroup (SSG) in the underground mining area of the Hishikari epithermal gold deposit, Kagoshima, Japan. Approximately 60% of the mineable auriferous quartz-adularia veins in the Honko vein system occur in sedimentary rocks of the SSG, whereas all the veins of the Yamada vein system occur in volcanic rocks of the HLA. Variations in the abundance and chemical composition of hydrothermal minerals and magnetic susceptibility of the hydrothermally altered rocks of the HLA and SSG were analyzed. In volcanic rocks of the HLA, hydrothermal minerals such as quartz, chlorite, adularia, illite, and pyrite replaced primary minerals. The amount of hydrothermal minerals in the volcanic rocks including chlorite, adularia, illite, and pyrite as well as the altered and/or replaced pyroxenes and plagioclase phenocrysts increases toward the veins in the Honko vein system. The vein-centered variation in mineral assemblage is pronounced within up to 25 m from the veins in the peripheral area of the Honko vein system, whereas it is not as apparent in the Yamada vein system. The hydrothermal minerals in sandstone of the SSG occur mainly as seams less than a few millimeters thick and are sporadically observed in halos along the veins and/or the seams. The alteration halos in sandstone of the SSG are restricted to within 1 m of the veins. In the peripheral area of the Honko vein system, chlorite in volcanic rocks is characterized by increasing in Al in its tetrahedral layer and the Fe/Fe + Mg ratio toward the veins, while illite in volcanic rocks has relatively low K and a restricted range of Fe/Fe + Mg ratios. Temperature estimates derived from chlorite geothermometry rise toward the veins within the volcanic rocks. The magnetic susceptibility of tuff breccia of the HLA varies from 21 to less than 0.01 × 10,3 SI within a span of 40 m from the veins and has significant variation relative to that of andesite (27,0.06 × 10,3 SI). The variation peripheral to the Honko vein system correlates with an increase in the abundance of hematite pseudomorphs after magnetite, the percentage of adularia and chlorite with high Fe/Fe + Mg ratios, and the degree of plagioclase alteration with decreasing distance to the veins. In contrast, sedimentary rocks of the SSG maintain a consistent magnetic susceptibility across the alteration zone, within a narrow range from 0.3 to 0.2 × 10,3 SI. Magnetic susceptibility of volcanic rocks of the HLA, especially tuff breccia, could serve as an effective exploration tool for identifying altered volcanic rocks. [source]


Orogenic Gold Mineralization in the Qolqoleh Deposit, Northwestern Iran

RESOURCE GEOLOGY, Issue 3 2007
Farhang Aliyari
Abstract The Qolqoleh gold deposit is located in the northwestern part of the Sanandai-Sirjan Zone, northwest of Iran. Gold mineralization in the Qolqoleh deposit is almost entirely confined to a series of steeply dipping ductile,brittle shear zones generated during Late Cretaceous,Tertiary continental collision between the Afro-Arabian and the Iranian microcontinent. The host rocks are Mesozoic volcano-sedimentary sequences consisting of felsic to mafic metavolcanics, which are metamorphosed to greenschist facies, sericite and chlorite schists. The gold orebodies were found within strong ductile deformation to late brittle deformation. Ore-controlling structure is NE,SW-trending oblique thrust with vergence toward south ductile,brittle shear zone. The highly strained host rocks show a combination of mylonitic and cataclastic microstructures, including crystal,plastic deformation and grain size reduction by recrystalization of quartz and mica. The gold orebodies are composed of Au-bearing highly deformed and altered mylonitic host rocks and cross-cutting Au- and sulfide-bearing quartz veins. Approximately half of the mineralization is in the form of dissemination in the mylonite and the remainder was clearly emplaced as a result of brittle deformation in quartz,sulfide microfractures, microveins and veins. Only low volumes of gold concentration was introduced during ductile deformation, whereas, during the evident brittle deformation phase, competence contrasts allowed fracturing to focus on the quartz,sericite domain boundaries of the mylonitic foliation, thus permitting the introduction of auriferous fluid to create disseminated and cross-cutting Au-quartz veins. According to mineral assemblages and alteration intensity, hydrothermal alteration could be divided into three zones: silicification and sulfidation zone (major ore body); sericite and carbonate alteration zone; and sericite,chlorite alteration zone that may be taken to imply wall-rock interaction with near neutral fluids (pH 5,6). Silicified and sulfide alteration zone is observed in the inner parts of alteration zones. High gold grades belong to silicified highly deformed mylonitic and ultramylonitic domains and silicified sulfide-bearing microveins. Based on paragenetic relationships, three main stages of mineralization are recognized in the Qolqoleh gold deposit. Stage I encompasses deposition of large volumes of milky quartz and pyrite. Stage II includes gray and buck quartz, pyrite and minor calcite, sphalerite, subordinate chalcopyrite and gold ores. Stage III consists of comb quartz and calcite, magnetite, sphalerite, chalcopyrite, arsenopyrite, pyrrhotite and gold ores. Studies on regional geology, ore geology and ore-forming stages have proved that the Qolqoleh deposit was formed in the compression,extension stage during the Late Cretaceous,Tertiary continental collision in a ductile,brittle shear zone, and is characterized by orogenic gold deposits. [source]


Yerranderie a Late Devonian Silver,Gold,Lead Intermediate Sulfidation Epithermal District, Eastern Lachlan Orogen, New South Wales, Australia

RESOURCE GEOLOGY, Issue 1 2007
Peter M. Downes
Abstract Felsic volcanic units of the Early Devonian Bindook Volcanic Complex host the Yerranderie epithermal silver,gold,lead district 94 km west,southwest of Sydney. Mineralization in the district forms part of a fault-controlled, intermediate sulfidation, epithermal silver,gold,base metal vein system that has significant mineral and alteration zonation. Stage 1 of the mineral paragenesis in the veins developed quartz and carbonate with early pyrite, whereas stage 2 is a crustiform banded quartz,pyrite,arsenopyrite assemblage. Stage 3, the main stage of sulfide deposition, comprises early sphalerite, followed by a tetrahedrite,tennantite,gold assemblage, then a galena,chalcopyrite,native silver,pyrite assemblage, and finally a pyrargyrite,polybasite,pearceite assemblage. Stage 4 involves the deposition of quartz veins with minor (late) pyrite and stage 5 is characterized by siderite that infilled remaining voids. Mineral zonation occurs along the Yerranderie Fault, with bornite being restricted to the Colon Peaks,Silver Peak mine area, whereas arsenopyrite, which is present in both the Colon Peaks,Silver Peak and Wollondilly mine areas, is absent in other lodes along the Yerranderie Fault. The Yerranderie Fault, which hosts the major lodes, is surrounded by a zoned alteration system. With increasing proximity to the fault the intensity of alteration increases and the alteration assemblage changes from an outer quartz,muscovite,illite,(ankerite) assemblage to a quartz,illite,(pyrite,carbonate) assemblage within meters of the fault. 40Ar/39Ar dating of muscovite from the alteration zone gave a 372.1 ± 1.9 Ma (Late Devonian) age, which is interpreted to be the timing of the quartz,sulfide vein formation. Sulfur isotope values for sulfides range from 0.1 to 6.2, with one outlier of ,5.6 ,34S,. The results indicate that the initial ore-forming fluids were reduced, and that sulfur was probably sourced from a magmatic reservoir, either as a direct magmatic contribution or indirectly through dissolution and recycling of sulfur from the host volcanic sequence. The sulfur isotope data suggest the system is isotopically zoned. [source]


Mineralogy, Lithogeochemistry and Elemental Mass Balance of the Hydrothermal Alteration Associated with the Gold-rich Batu Hijau Porphyry Copper Deposit, Sumbawa Island, Indonesia

RESOURCE GEOLOGY, Issue 3 2009
Arifudin Idrus
Abstract This paper discusses the mineralogy, whole-rock geochemistry and elemental mass balance of the hydrothermal alteration zones within the Batu Hijau porphyry copper-gold deposit, Sumbawa Island, Indonesia. The hydrothermal alteration and mineralisation developed in four stages, namely (i) the early stage consisting of a central copper-gold-bearing biotite (potassic), proximal actinolite (inner propylitic) and the distal chlorite-epidote (outer propylitic) zones; (ii) the transitional stage represented by the chlorite-sericite (intermediate argillic) zone; (iii) the late stages distinguished into the sericite-paragonite (argillic) and pyrophyllite-andalusite (advanced argillic) zones; and (iv) the very late stage typified by the illite-sericite zone. In general, major elements (particularly Ca, Mg, Na and K) and some minor and rare earth elements decrease from the least altered rocks towards the late alteration zones as a consequence of the breakdown of Ca-bearing hornblende, biotite and plagioclase. Chemical discrimination by means of millicationic R1 -R2 diagram indicates that R1 [4Si , 11(Na + K) , 2(Fe + Ti)] increases while R2[6Ca + 2Mg + Al] decreases with increasing alteration intensity, from least-altered, through early, transitional, to late alteration zones. Rare earth elements-chondrite (C1) normalised patterns also exhibit the depletion of the elements through the subsequent alteration zones. These results are consistent with the elemental mass balance calculation using the isocon method which shows that the degree of mass and volume depletion systematically increases during alteration. A decrease of the elements as well as mass and volume from early, through transitional to late alteration stages may imply a general decrease of the element activities in hydrothermal fluids during the formation of the alteration zones. [source]


Orogenic Gold Mineralization in the Qolqoleh Deposit, Northwestern Iran

RESOURCE GEOLOGY, Issue 3 2007
Farhang Aliyari
Abstract The Qolqoleh gold deposit is located in the northwestern part of the Sanandai-Sirjan Zone, northwest of Iran. Gold mineralization in the Qolqoleh deposit is almost entirely confined to a series of steeply dipping ductile,brittle shear zones generated during Late Cretaceous,Tertiary continental collision between the Afro-Arabian and the Iranian microcontinent. The host rocks are Mesozoic volcano-sedimentary sequences consisting of felsic to mafic metavolcanics, which are metamorphosed to greenschist facies, sericite and chlorite schists. The gold orebodies were found within strong ductile deformation to late brittle deformation. Ore-controlling structure is NE,SW-trending oblique thrust with vergence toward south ductile,brittle shear zone. The highly strained host rocks show a combination of mylonitic and cataclastic microstructures, including crystal,plastic deformation and grain size reduction by recrystalization of quartz and mica. The gold orebodies are composed of Au-bearing highly deformed and altered mylonitic host rocks and cross-cutting Au- and sulfide-bearing quartz veins. Approximately half of the mineralization is in the form of dissemination in the mylonite and the remainder was clearly emplaced as a result of brittle deformation in quartz,sulfide microfractures, microveins and veins. Only low volumes of gold concentration was introduced during ductile deformation, whereas, during the evident brittle deformation phase, competence contrasts allowed fracturing to focus on the quartz,sericite domain boundaries of the mylonitic foliation, thus permitting the introduction of auriferous fluid to create disseminated and cross-cutting Au-quartz veins. According to mineral assemblages and alteration intensity, hydrothermal alteration could be divided into three zones: silicification and sulfidation zone (major ore body); sericite and carbonate alteration zone; and sericite,chlorite alteration zone that may be taken to imply wall-rock interaction with near neutral fluids (pH 5,6). Silicified and sulfide alteration zone is observed in the inner parts of alteration zones. High gold grades belong to silicified highly deformed mylonitic and ultramylonitic domains and silicified sulfide-bearing microveins. Based on paragenetic relationships, three main stages of mineralization are recognized in the Qolqoleh gold deposit. Stage I encompasses deposition of large volumes of milky quartz and pyrite. Stage II includes gray and buck quartz, pyrite and minor calcite, sphalerite, subordinate chalcopyrite and gold ores. Stage III consists of comb quartz and calcite, magnetite, sphalerite, chalcopyrite, arsenopyrite, pyrrhotite and gold ores. Studies on regional geology, ore geology and ore-forming stages have proved that the Qolqoleh deposit was formed in the compression,extension stage during the Late Cretaceous,Tertiary continental collision in a ductile,brittle shear zone, and is characterized by orogenic gold deposits. [source]


Mass Transfer, Oxygen Isotopic Variation and Gold Precipitation in Epithermal System: A Case Study of the Hishikari Deposit, Southern Kyushu, Japan

RESOURCE GEOLOGY, Issue 3 2002
Naotatsu SHIKAZONO
Abstract: Transportation of various kinds of elements occurred in wall rocks (Quaternary andesites) during the hydrothermal alteration accompanied by the Hishikari epithermal gold mineralization. For example, K2O and MgO contents of wall rocks decrease away from the gold-quartz veins, while (CaO+Na2O) content increases, and SiO2 content is variable near the veins. Hydrothermal alteration zoning and bulk compositional variations in wall rocks suggest that the mixing of hydrothermal solution and acidic groundwater took place an important role as the cause for the hydrothermal alteration and bulk compositional variations. The relationship between dissolved silica concentration and temperature of hydrothermal solution mixed with groundwater is obtained based on precipitation kinetics-fluid flow,mixing model, and the computed results are compared with the distribution of SiO2 minerals (quartz and cristobalite) in the hydrothermal alteration zones. This comparison suggests that the most reasonable flow rate of fluids migrating through hydrothermal alteration zones, and A/M (A: surface area of rocks interacting with fluid, M: mass of fluid) are estimated to be ca. 10 -4.2 m/sec, and ca. 0.10 m2/kg, respectively. The mixing of two fluids (hydrothermal solution and acidic groundwater) can also explain ,18O zoning in the altered country rocks, hydrothermal alteration zoning from K-feldspar through K-mica to kaolinite from the center (veins) to margin, and deposition of gold. [source]


Alteration Patterns Related to Hydrothermal Gold Mineralizaition in Meta-andesites at Dungash Area, Eastern Desert, Egypt

RESOURCE GEOLOGY, Issue 1 2001
Hossam A. Helba
Abstract: The hydrothermal alteration patterns associating with the gold prospect hosted by metavolcanics in the Dungash area, Eastern Desert of Egypt, were investigated in order to assign their relationship to mineralization. The metavolcanics of andesitic composition are generated by regional metamorphism of greenschist facies superimposed by hydrothermal activity. Epidote and chlorite are metamorphic minerals, whereas sericite, carbonates, and chlorite are hydrothermal alteration minerals. The auriferous quartz vein is of NEE-SWW trend and cuts mainly the andesitic metavolcanics, but sometimes extends to the neighbouring metapyroclastics and metasediments. Quartz-sericite, sericite, carbonate-sericite, and chlorite-sericite constitute four distinctive alteration zones which extend outwards from the mineralized quartz vein. The quartz-sericite and sericite zones are characterized by high contents of SiO2, K2O, Rb, and As, the carbonate-sericite zone is by high contents of CaO, Au, Cu, Cr, Ni, and Y, and the chlorite-sericite zone is by high contents of MgO, Na2O, Zn, Ba, and Co. Gold and sulphide minerals are relatively more abundant in the carbonate-sericite zone followed by the sericite one. The geochemistry of the alteration system was investigated using volume-composition and mass balance calculations. The volume factors obtained for the different alteration zones, mentioned above (being 1.64, 1.19, 1.17, and 1.07, respectively), indicate that replacement had taken place with a volume gain. The mass balance calculations revealed addition of SiO2, K2O, As, Cu, Rb, Ba, Ni, and Y to the system as a whole and subtraction of Fe2O3 from the system. Initial high aK+ and aH+ for the invading fluids is suggested. As the fluids migrated into wallrocks, they became more concentrated in Mg, Ca, and Na with increasing activities of CO2 and S. The calculated loss-gain data are in agreement with the microscopic observations. Breakdown of ferromagnesian minerals and feldspars in the quartz-sericite, sericite, and chlorite-sericite zones accompanied by loss in Mg, Fe, Ca, and Na under acidic conditions and low CO2/H2O ratio may obstruct the formation of carbonates and sulphides, and the precipitation of gold in these zones. The role of metamorphic fluids in the area is expected to be restricted to the liberation of Au and some associated elements from their hosts. [source]


Large-scale Migration of Fluids toward Foreland Basins during Collisional Orogeny: Evidence from Triassic Anhydrock Sequences and Regional Alteration in the Middle-Lower Yangtze Area

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2004
HOU Zengqian
Abstract The middle-lower Yangtze area underwent a series of complex tectonic evolution, such as Hercynian extensional rifting, Indosinian foreland basining, and Yanshanian transpression-transtension, resulting in a large distinctive Cu-Fe-Au metallogenic belt. In the tectonic evolution, large-scale migration and convergence of fluids toward foreland basins induced during the collisional orogeny of the Yangtze and North China continental blocks were of vital importance for the formation of the metallogenic belt. Through geological surveys of the middle-lower Yangtze area, three lines of evidence of large-scale fluid migration are proposed: (1) The extensive dolomitic and silicic alteration penetrating Cambrian-Triassic strata generally occurs in a region sandwiched between the metallogenic belt along the Yangtze River and the Dabie orogenic belt, and in the alteration domain alternately strong and weak alteration zones extend in a NW direction and are controlled by the fault system of the Dabie orogenic belt; it might record the locus of the activities of long-distance migrating fluids. (2) The textures and structures of very thick Middle-Lower Triassic anhydrock sequences in restricted basins along the river reveal the important contribution of the convergence of regional hot brine in restricted basins and the chemical deposition or their formation. (3) Early-Middle Triassic syndepositional iron carbonate sequences and Fe-Cu-Pb-Zn massive sulfide deposits alternate with anhydrock sequences or are separated from the latter, but all of them occur in the same stratigraphic horizon and are intimately associated with each other, being the product of syndeposition of high-salinity hot brine. According to the geological surveys, combined with previous data, the authors propose a conceptual model of fluid migration-convergence and mineralization during the Dabie collisional orogeny. [source]