Home About us Contact | |||
Gut Content Analysis (gut + content_analysis)
Selected AbstractsGut content analysis and a new feeding group classification of termitesECOLOGICAL ENTOMOLOGY, Issue 4 2001S. E. Donovan Summary 1. Gut content analysis of termites was undertaken using microscopical techniques. The 46 study species covered the entire range of taxonomic and feeding forms within the Order. 2. Inter-specific gut contents data were analysed using principal components analysis, placing species along a clear humification gradient based on variations in the amount of silica and plant tissue fragments in the gut. 3. Redundancy analysis was used to find morphological correlates of the observed variation in gut contents. A total of 22 morphological characters (out of 45 candidate characters) were correlated significantly with the gut contents. 4. Three of the 22 significantly correlated characters unambiguously defined feeding groups, which were designated groups I to IV in increasing order of humification of the feeding substrate. Group I contains lower termite dead wood and grass-feeders; group II contains Termitidae with a range of feeding habits including dead wood, grass, leaf litter, and micro-epiphytes; group III contains Termitidae feeding in the organic rich upper layers of the soil; group IV contains the true soil-feeders (again all Termitidae), ingesting apparently mineral soil. These groupings were generally supported statistically in a canonical covariance analysis, although group II apparently represents termite species with a rather wide range of feeding habits. 5. Using existing hypotheses of termite phylogenetic relationships, it seems probable that group I feeders are phylogenetically basal, and that the other groupings have arisen independently on a number of occasions. Soil-feeding (i.e. group III and group IV feeding) may have evolved due to the co-option of faecal material as a fungal substrate by Macrotermitinae-like ancestral forms. As a consequence, these forms would have been constrained to build nest structures from soil and would therefore have passed at least some soil through their guts. [source] The effect of the introduction of Nile tilapia (Oreochromis niloticus, L.) on small indigenous fish species (mola, Amblypharyngodon mola, Hamilton; chela, Chela cachius, Hamilton; punti, Puntius sophore, Hamilton)AQUACULTURE RESEARCH, Issue 6 2010Sultanul Arafin Shemeen Ahmad Abstract This is the first controlled experiment to quantify the effect of introduced tilapia on indigenous species. This experiment was conducted in small earthen ponds (100 m2) to assess the impact of mixed-sex or all-male Nile tilapia (Oreochromis niloticus) on small indigenous species (SIS) commonly found in south Asia, mola (Amblypharyngodon mola), chela (Chela cachius) and punti (Puntius sophore). Ponds were fertilized, then stocked with 0.56 fish m,2 of water surface area in the mixed-sex and all-male tilapia treatments and 0.42 fish m,2 in the treatment without tilapia. No additional nutritional inputs were applied after stocking. Treatments were: mixed-sex tilapia with SIS, mono-sex male tilapia with SIS and SIS without tilapia (control). All treatments were stocked with 14 fish per species. All species reproduced during the 21-month culture duration. The number of recruits varied by species, Tilapia reproduced in greater numbers than SIS. Tilapia numbers at harvest were the highest (451 ± 25/100 m2) in the mixed-sex treatment compared with mola (221 ± 22/100 m2), chela (94 ± 8/100 m2) and punti (100 ± 7/100 m2). The number of mola was higher (399 ± 33/100 m2) in the all-male tilapia treatment. There was reduction in the number of mola and chela in the treatment containing mixed-sex tilapia. Gut content analysis combined with water sampling revealed that all fish species fed selectively. Significant interspecies dietary overlap was found between Nile tilapia and SIS and among SIS. Thus, there is potential for tilapia to compete with indigenous fish species when space and other resources are limiting, but a longer duration study with varying level of management is needed to determine how successfully tilapia competes with locally adapted SIS. [source] Origins of carbon sustaining the growth of whitefish Coregonus lavaretus early larval stages in Lake Annecy: insights from fatty-acid biomarkersJOURNAL OF FISH BIOLOGY, Issue 1 2009M.-E. Perga The hypothesis that diatom carbon (C) produced during the spring peak supported spring zooplankton production and, ultimately, the growth of Coregonus lavaretus early larval stages from March to May 2006 in Lake Annecy, France, was tested using gut content analyses and fatty acid biomarkers. Gut content results showed that C. lavaretus larvae from stages 1 to 4 preferentially fed on copepods with Daphnia sp. only a minor proportion of larval diet. The levels of diatom-marker fatty acids (C16:1n-7 and C20:5n-3) were high in Daphnia sp., but lower in both copepods and C. lavaretus larvae from stages 0 to 4. These results indicated that the spring diatom biomass was actually grazed by Daphnia sp., but, contrary to what was expected, the spring bloom was not the only C source supporting copepods secondary production and, consequently, the growth of C. lavaretus early larval stages. In contrast, levels of terrestrial fatty acid marker (C24:0) were low in Daphnia sp. but high in copepods and C. lavaretus larvae, indicating a significant contribution of terrestrial carbon to copepods and, ultimately, to the growth of C. lavaretus early larval stages. [source] Ferox Trout (Salmo trutta) as `Russian dolls': complementary gut content and stable isotope analyses of the Loch Ness foodwebFRESHWATER BIOLOGY, Issue 7 2002J. GREY 1.,Conventional collection methods for pelagic fish species (netting, trawling) are impractical or prohibited in Loch Ness, U.K. To investigate trophic relationships at the top of the Loch Ness food web, an alternative strategy, angling, provided samples of the top predator, the purely piscivorous ferox trout (Salmo trutta). 2.,The gut contents of these fish provided further samples of prey-fish, and subsequent examination of prey-fish guts revealed their dietary intake, analogous to the famous nested `Russian dolls'. Each trophic level separated by gut content analysis provided further complementary samples for stable isotope analysis and thus information on the longer term, assimilated diet. 3.,Ferox trout exhibited considerable cannibalism to supplement a diet of Arctic charr (Salvelinus alpinus). However, conspecifics stemmed from a lower isotopic baseline in relation to charr, so ferox trout exhibited a lower trophic level than predicted (4.3) by using the ,15N values. Charr displayed dietary specialisation with increasing length, and isotopic values supported by the gut data placed the charr at a trophic level of 3.5. The isotope data also indicated that charr carbon was primarily autochthonous in origin. [source] Universal primers and PCR of gut contents to study marine invertebrate dietsMOLECULAR ECOLOGY, Issue 3 2005L. E. BLANKENSHIP Abstract Determining the diets of marine invertebrates by gut content analysis is problematic. Many consumed organisms become unrecognizable once partly digested, while those with hard remains (e.g. diatom skeletons) may bias the analysis. Here, we adapt DNA-based methods similar to those used for microbial diversity surveys as a novel approach to study the diets of macrophagous (the deep-sea amphipods Scopelocheirus schellenbergi and Eurythenes gryllus) and microphagous (the bivalve Lucinoma aequizonata) feeders in the deep sea. Polymerase chain reaction (PCR) in conjunction with ,universal' primers amplified portions of the mitochondrial cytochrome c oxidase I (COI) gene for animals ingested by S. schellenbergi and E. gryllus and the 18S rRNA gene for lesser eukaryotes ingested by L. aequizonata. Amplified sequences were combined with sequences from GenBank to construct phylogenetic trees of ingested organisms. Our analyses indicate that S. schellenbergi, E. gryllus and L. aequizonata diets are considerably more diverse than previously thought, casting new light on the foraging strategies of these species. Finally, we discuss the strengths and weaknesses of this technique and its potential applicability to diet analyses of other invertebrates. [source] Growth and food availability of silver and bighead carps: evidence from stable isotope and gut content analysisAQUACULTURE RESEARCH, Issue 14 2009Qiong Zhou Abstract A 2-year investigation of growth and food availability of silver carp and bighead was carried out using stable isotope and gut content analysis in a large pen in Meiliang Bay of Lake Taihu, China. Both silver carp and bighead exhibited significantly higher ,13C in 2005 than in 2004, which can probably be attributed to two factors: (i) the difference between isotopic compositions at the base of the pelagic food web and (ii) the difference between the compositions of prey items and stable isotopes. The significantly positive correlations between body length, body weight and stable isotope ratios indicated that isotopic changes in silver carp and bighead resulted from the accumulation of biomass concomitant with rapid growth. Because of the drastic decrease in zooplankton in the diet in 2005, silver carp and bighead grew faster in 2004 than in 2005. Bighead carp showed a lower trophic level than silver carp in 2005 as indicated by stable nitrogen isotope ratios, which was possibly explained by the interspecific difference between the prey species and the food quality of silver carp and bighead. [source] Comparing trophic position of stream fishes using stable isotope and gut contents analysesECOLOGY OF FRESHWATER FISH, Issue 2 2008S. M. Rybczynski Abstract,,, Stable isotope analysis (SIA) and gut contents analysis (GCA) are commonly used in food web studies, but few studies analyse these data in concert. We used SIA (,15N) and GCA (% composition) to identify diets and trophic position (TP) of six stream fishes and to compare TP estimates between methods. Ordination analysis of gut contents identified two primary trophic groups, omnivores and predators. Significant differences in TPGCA and TPSIA were similar in direction among-species and among-trophic groups; neither method detected seasonal changes in omnivore diets. Within-species TPGCA and TPSIA were similar except for one omnivore. TPGCA was less variable than TPSIA for predators, but variation between methods was similar for omnivores. While both methods were equally robust at discriminating trophic groups of fishes, TPSIA is less laborious to estimate and may facilitate cross-stream comparisons of food web structure and energy flow. [source] Influence of lateral gradients of hydrologic connectivity on trophic positions of fishes in the Upper Mississippi RiverFRESHWATER BIOLOGY, Issue 3 2009KATHERINE A. ROACH Summary 1. Riverscapes consist of the main channel and lateral slackwater habitats along a gradient of hydrological connectivity from maximum connection in main channel habitats to minimum connection in backwaters. Spatiotemporal differences in water currents along this gradient produce dynamic habitat conditions that influence species diversity, population densities and trophic interactions of fishes. 2. We examined the importance of lateral connectivity gradients for food web dynamics in the Upper Mississippi River during spring (high flow, moderately low temperatures) and summer (low flow, higher temperatures). We used literature information and gut contents analyses to determine feeding guilds and stable isotope analysis to estimate mean trophic position of local fish assemblages. During June and August 2006, we collected over 1000 tissue samples from four habitats (main channel, secondary channels, tertiary channels and backwaters) distributed within four hydrologic connectivity gradients. 3. Mean trophic position differed among feeding guilds and seasons, with highest values in spring. Mean trophic position of fish assemblages, variability in trophic position and food chain length (maximum trophic position) of the two dominant piscivore species (Micropterus salmoides and M. dolomieu) in both seasons were significantly associated with habitat along the lateral connectivity gradient. Food chain length peaked in tertiary channels in both seasons, probably due to higher species diversity of prey at these habitats. We infer that food chain length and trophic position of fish assemblages were lower in backwater habitats in the summer mainly because of the use of alternative food sources in these habitats. 4. A greater number of conspecifics exhibited significant among-habitat variation in trophic position during the summer, indicating that low river stages can constrain fish movements in the Upper Mississippi River. 5. Results of this study should provide a better understanding of the fundamental structure of large river ecosystems and an improved basis for river rehabilitation and management through knowledge of the importance of lateral complexity in rivers. [source] Comparing trophic position of stream fishes using stable isotope and gut contents analysesECOLOGY OF FRESHWATER FISH, Issue 2 2008S. M. Rybczynski Abstract,,, Stable isotope analysis (SIA) and gut contents analysis (GCA) are commonly used in food web studies, but few studies analyse these data in concert. We used SIA (,15N) and GCA (% composition) to identify diets and trophic position (TP) of six stream fishes and to compare TP estimates between methods. Ordination analysis of gut contents identified two primary trophic groups, omnivores and predators. Significant differences in TPGCA and TPSIA were similar in direction among-species and among-trophic groups; neither method detected seasonal changes in omnivore diets. Within-species TPGCA and TPSIA were similar except for one omnivore. TPGCA was less variable than TPSIA for predators, but variation between methods was similar for omnivores. While both methods were equally robust at discriminating trophic groups of fishes, TPSIA is less laborious to estimate and may facilitate cross-stream comparisons of food web structure and energy flow. [source] |