Guanylyl Cyclase Inhibitor (guanylyl + cyclase_inhibitor)

Distribution by Scientific Domains

Kinds of Guanylyl Cyclase Inhibitor

  • soluble guanylyl cyclase inhibitor


  • Selected Abstracts


    Differential regulation of the nitric oxide,cGMP pathway exacerbates postischaemic heart injury in stroke-prone hypertensive rats

    EXPERIMENTAL PHYSIOLOGY, Issue 1 2007
    Tetsuji Itoh
    Using a working perfused heart model, we investigated the hypothesis that alterations in the NO,cGMP pathway may exacerbate postischaemic mechanical dysfunction in the hypertrophied heart. Ischaemia for 25 min followed by reperfusion for 30 min produced marked cardiac mechanical dysfunction in both stroke-prone spontaneously hypertensive rats (SHRSP) and normotensive Wistar Kyoto rats (WKY). Exogenous treatment with S -nitroso- N -acetyl- dl -penicillamine (SNAP), a NO donor, had beneficial effects on the cardiac dysfunction induced by ischaemia,reperfusion (I/R) in the WKY heart, but the cardioprotective effect of SNAP was eliminated by guanylyl cyclase inhibitor. Cardiac cGMP levels were increased by SNAP or ischaemia in WKY. In contrast, in SHRSP hearts, SNAP could not alleviate the cardiac dysfunction caused by I/R. Pre-ischaemia, the cardiac cGMP level was significantly higher in SHRSP than in WKY; however, no significant difference was found after SNAP and ischaemia. The myocardial Ca2+ -dependent NO synthase (NOS) activity increased at the end of ischaemia in WKY. Conversely, the Ca2+ -independent NOS activity and protein levels were upregulated by I/R in the SHRSP myocardium. In the SHRSP hearts, non-selective NOS and selective Ca2+ -independent NOS inhibitors or antioxidant treatment alleviated cardiac dysfunction caused by I/R. Moreover, mRNA expression and Western blotting analysis of cGMP-dependent protein kinase type I showed more deterioration of SHRSP hearts compared with WKY. These results suggest that: (1) the NO-dependent cardioprotective effect is depressed; and (2) overproduction of NO derived from Ca2+ -independent NOS contributes to postischaemic heart injury in the hypertrophied heart of hypertensive status. [source]


    Neuropeptide Y stimulates retinal neural cell proliferation , involvement of nitric oxide

    JOURNAL OF NEUROCHEMISTRY, Issue 6 2008
    Ana Rita Álvaro
    Abstract Neuropeptide Y (NPY) is a 36 amino acid peptide widely present in the CNS, including the retina. Previous studies have demonstrated that NPY promotes cell proliferation of rat post-natal hippocampal and olfactory epithelium precursor cells. The aim of this work was to investigate the role of NPY on cell proliferation of rat retinal neural cells. For this purpose, primary retinal cell cultures expressing NPY, and NPY Y1, Y2, Y4 and Y5 receptors [Álvaro et al., (2007) Neurochem. Int., 50, 757] were used. NPY (10,1000 nM) stimulated cell proliferation through the activation of NPY Y1, Y2 and Y5 receptors. NPY also increased the number of proliferating neuronal progenitor cells (BrdU+/nestin+ cells). The intracellular mechanisms coupled to NPY receptors activation that mediate the increase in cell proliferation were also investigated. The stimulatory effect of NPY on cell proliferation was reduced by l -nitroarginine-methyl-esther (l -NAME; 500 ,M), a nitric oxide synthase inhibitor, 1H-[1,2,4]oxadiazolo-[4, 3-a]quinoxalin-1-one (ODQ; 20 ,M), a soluble guanylyl cyclase inhibitor or U0126 (1 ,M), an inhibitor of the extracellular signal-regulated kinase 1/2 (ERK 1/2). In conclusion, NPY stimulates retinal neural cell proliferation, and this effect is mediated through nitric oxide,cyclic GMP and ERK 1/2 pathways. [source]


    Nifedipine enhances cGMP production through the activation of soluble guanylyl cyclase in rat ventricular papillary muscle

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 4 2005
    Kazuhiko Seya
    It is known that nifedipine, an L-type calcium channel blocker, increases cGMP production, which partially contributes to the relaxation of vascular smooth muscle. The aim of our investigation was to clarify whether or not nifedipine regulates cGMP production, which has a physiological role in cardiac muscle. To measure contractile responses and tissue cGMP levels, left ventricular papillary muscles prepared from male Wistar rats (350,400 g) were mounted in the isolated organ chamber under isometric conditions and electrically paced by means of platinum punctate electrodes (1 Hz, 1 ms duration). In papillary muscle preparation, the negative inotropic effect induced by nifedipine (30 to 300 nm) was significantly inhibited in the presence of ODQ (1H-[1,2,4]oxidazolo[4,3-a]quinoxaline-1-one; 10 ,m), a soluble guanylyl cyclase inhibitor. Furthermore, nifedipine (100 nm) strongly increased the tissue cGMP level, which was significantly decreased in the presence of ODQ. On the other hand, NG -monomethyl-l-arginine (100 ,m), a nitric oxide synthase inhibitor, did not inhibit either the negative inotropic effect or cGMP production induced by nifedipine. These results indicate that in rat left ventricular papillary muscle, nifedipine augments its negative inotropic effect at least partly through direct activation of cardiac soluble guanylyl cyclase but not nitric oxide synthase. [source]


    Effect of ropivacaine on endothelium-dependent phenylephrine-induced contraction in guinea pig aorta

    ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 10 2007
    P. L. Lin
    Background:, Previous studies have shown that ropivacaine has biphasic vascular effects, causing vasoconstriction at low concentrations and vasorelaxation at high concentrations. This study was designed to examine the role of the endothelium during accidental intravascular absorption of ropivacaine, and to elucidate the mechanisms responsible. Methods:, Isolated guinea pig aortic rings were suspended for isometric tension recording. The effects of ropivacaine on endothelium-intact and endothelium-denuded aortic rings were assessed. Endothelium-intact aortic rings were pre-contracted with phenylephrine before being exposed to ropivacaine and acetylcholine, in order to generate and compare concentration,response curves. In the absence and presence of yohimbine, propranolol, atropine, indometacin, NG -nitro- l -arginine methyl ester (l -NAME), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or methylene blue, the contractile response induced by ropivacaine was assessed on endothelium-intact aortic rings pre-contracted with phenylephrine. Results:, Ropivacaine (3 × 10,4 to 10,2 mol/l) produced vasoconstriction in endothelium-denuded aortic rings, whereas no such response was observed in aortic rings with intact endothelium. In phenylephrine pre-contracted intact aortic rings, ropivacaine induced a greater degree of vasorelaxation than did acetylcholine. Yohimbine, propranolol and atropine all failed to affect the relaxation responses induced by ropivacaine. However, pre-treatment with indometacin (cyclo-oxygenase inhibitor), l -NAME (nitric oxide synthase inhibitor), methylene blue (soluble guanylyl cyclase inhibitor) or ODQ (soluble guanylyl cyclase inhibitor), significantly decreased the ropivacaine-induced relaxation of endothelium-intact aortic rings (3 × 10,4 to 10,2 mol/l). Conclusions:, Ropivacaine elicits an endothelium-dependent vasorelaxation in phenylephrine pre-contracted aortic rings via the nitric oxide,cyclic guanosine 3,,5,-monophosphate pathway and the prostaglandin system. [source]


    The role of cyclic-AMP on arginase activity by a murine macrophage cell line (RAW264.7) stimulated with lipopolysaccharide from Actinobacillus actinomycetemcomitans

    MOLECULAR ORAL MICROBIOLOGY, Issue 6 2006
    W. Sosroseno
    Aims:, The aim of the present study was to determine the role of cyclic adenosine monophosphate (cAMP) on arginase activity in a murine macrophage cell line (RAW264.7 cells) stimulated with lipopolysaccharide (LPS) from Actinobacillus actinomycetemcomitans. Materials and methods:, The cells were treated with A. actinomycetemcomitans LPS for 24 h. The effects of SQ22536 (an adenylyl cyclase inhibitor), ODQ (a guanylyl cyclase inhibitor), dibutyryl cAMP (a cAMP analog), 8-bromo cyclic guanosine monophosphate (a cGMP analog), forskolin (an adenylyl cylase activator), and cycloheximide (a protein synthesis inhibitor) on arginase activity in A. actinomycetemcomitans LPS-stimulated RAW264.7 cells were also determined. Arginase activity was assessed in LPS-stimulated cells in the presence of 3-isobutyl-1-methylxanthine (IBMX), siguazodan and rolipram [phosphodiesterase (PDE) inhibitors] as well as KT5720 [a protein kinase A (PKA) inhibitor]. Results:, Arginase activity in A. actinomycetemcomitans LPS-stimulated RAW264.7 cells was suppressed by SQ22536 but not ODQ. Enhancement of arginase activity was observed in the presence of cAMP analog or forskolin but not cGMP analog. Cycloheximide blocked arginase activity in the cells in the presence of cAMP analog or forskolin with or without A. actinomycetemcomitans LPS. IBMX augmented arginase activity in A. actinomycetemcomitans LPS-stimulated cells. Rolipram (a PDE4 inhibitor) increased the levels of arginase activity higher than siguazodan (a PDE3 inhibitor) in the antigen-stimulated cells. The effect of cAMP analog or forskolin on arginase activity in the presence or absence of A. actinomycetemcomitans LPS was blocked by the PKA inhibitor (KT5720). Conclusion:, The results of the present study suggest that A. actinomycetemcomitans LPS may stimulate arginase activity in murine macrophages (RAW264.7 cells) in a cAMP-PKA-dependent pathway. [source]


    Role of sarcoplasmic reticulum in control of membrane potential and nitrergic response in opossum lower esophageal sphincter

    BRITISH JOURNAL OF PHARMACOLOGY, Issue 6 2003
    Yong Zhang
    We previously demonstrated that a balance of Ca2+ -activated Cl, current (ICl(Ca)) and K+ current activity sets the resting membrane potential of opossum lower esophageal sphincter (LES) circular smooth muscle at ,,41 mV, which leads to continuous spike-like action potentials and the generation of basal tone. Ionic mechanisms underlying this basal ICl(Ca) activity and its nitrergic regulation remain unclear. Recent studies suggest that spontaneous Ca2+ release from sarcoplasmic reticulum (SR) and myosin light chain kinase (MLCK) play important roles. The current study investigated this possibility. Conventional intracellular recordings were performed on circular smooth muscle of opossum LES. Nerve responses were evoked by electrical square wave pulses of 0.5 ms duration at 20 Hz. In the presence of nifedipine (1 ,M), substance P (1 ,M), atropine (3 ,M) and guanethidine (3 ,M), intracellular recordings demonstrated a resting membrane potential (MP) of ,38.1±0.7 mV (n=25) with spontaneous membrane potential fluctuations (MPfs) of 1,3 mV. Four pulses of nerve stimulation induced slow inhibitory junction potentials (sIJPs) with an amplitude of 6.1±0.3 mV and a half-amplitude duration of 1926±147 ms (n=25). 1H -[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a specific guanylyl cyclase inhibitor, abolished sIJPs, but had no effects on MPfs. Caffeine, a ryanodine receptor agonist, hyperpolarized MP and abolished sIJPs and MPfs. Ryanodine (20 ,M) inhibited the sIJP and induced biphasic effects on MP, an initial small hyperpolarization followed by a large depolarization. sIJPs and MPfs were also inhibited by cyclopiazonic acid, an SR Ca2+ ATPase inhibitor. Specific ICl(Ca) and MLCK inhibitors hyperpolarized the MP and inhibited MPfs and sIJPs. These data suggest that (1) spontaneous release of Ca2+ from the SR activates ICl(Ca), which in turn contributes to resting membrane potential; (2) MLCK is involved in activation of ICl(Ca); (3) inhibition of ICl(Ca) is likely to underlie sIJPs induced by nitrergic innervation. British Journal of Pharmacology (2003) 140, 1097,1107. doi:10.1038/sj.bjp.0705537 [source]


    Activation and potentiation of the NO/cGMP pathway by NG -hydroxyl- L -arginine in rabbit corpus cavernosum under normoxic and hypoxic conditions and ageing

    BRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2003
    Javier Angulo
    When nitric oxide synthase (NOS) produces NO from NG -hydroxy- L -arginine (OH-arginine) instead of L -arginine, the total requirement of molecular oxygen and NADPH to form NO is reduced. The aim of this work was to evaluate the effects of OH-arginine on the contractility of rabbit corpus cavernosum (RCC) and to compare the capacities of L -arginine and OH-arginine to enhance NO-mediated responses under normoxic and hypoxic conditions and in ageing, as models of defective NO production. OH-arginine, but not L -arginine, was able to relax phenylephrine-contracted rabbit trabecular smooth muscle. OH-arginine-induced relaxation was inhibited by the NOS-inhibitor, L -NNA (300 ,M), and by the guanylyl cyclase inhibitor, ODQ (20 ,M), while it was not affected by the cytochrome P450 oxygenase inhibitor, miconazole (0.1 mM). Administration of OH-arginine, but not L -arginine, produced a significant increment of cGMP accumulation in RCC tissue. Relaxation elicited by OH-arginine (300 ,M) was still observed at low oxygen tension. The increase of cGMP levels induced by ACh (30 ,M) in RCC was significantly enhanced by addition of OH-arginine (300 ,M) in normoxic conditions, as well as under hypoxia, while L -arginine did not alter the effects of ACh on cGMP accumulation. Endothelium-dependent and nitrergic nerve-mediated relaxations were both significantly reduced in RCC from aged animals (>20-months-old) when compared with young adult rabbits (5-months-old). Treatment with OH-arginine (300 ,M) significantly potentiated endothelium-dependent and neurogenic relaxation in corpus cavernosum from aged rabbits, while L -arginine (300 ,M) did not have significant effects. Results show that OH-arginine promotes NO-mediated relaxation of RCC and potentiates the NO-mediated responses induced by stimulation of endogenous NO generation in hypoxic and aged tissues. We propose that the use of OH-arginine could be of interest in the treatment of erectile dysfunction, at least in those secondary to defective NO production. British Journal of Pharmacology (2003) 138, 63,70. doi:10.1038/sj.bjp.0705027 [source]


    Transgenic neuronal nitric oxide synthase expression induces axotomy-like changes in adult motoneurons

    THE JOURNAL OF PHYSIOLOGY, Issue 18 2010
    Fernando Montero
    Dysregulation of protein expression, function and/or aggregation is a hallmark of a number of neuropathological conditions. Among them, upregulation and/or de novo expression of the neuronal isoform of nitric oxide (NO) synthase (nNOS) commonly occurs in diverse neurodegenerative diseases and in axotomized motoneurons. We used adenoviral (AVV) and lentiviral (LVV) vectors to study the effects of de novo nNOS expression on the functional properties and synaptic array of motoneurons. AVV-nNOS injection into the genioglossus muscle retrogradely transduced neonatal hypoglossal motoneurons (HMNs). Ratiometric real-time NO imaging confirmed that transduced HMNs generated NO gradients in brain parenchyma (space constant: ,12.3 ,m) in response to a glutamatergic stimulus. Unilateral AVV-nNOS microinjection in the hypoglossal nucleus of adult rats induced axotomy-like changes in HMNs. Specifically, we found alterations in axonal conduction properties and the recruitment order of motor units and reductions in responsiveness to synaptic drive and in the linear density of synaptophysin-positive puncta opposed to HMN somata. Functional alterations were fully prevented by chronic treatment with nNOS or soluble guanylyl cyclase inhibitors. Synaptic and functional changes were also completely avoided by prior intranuclear injection of a neuron-specific LVV system for miRNA-mediated nNOS knock-down (LVV-miR-shRNA/nNOS). Furthermore, synaptic and several functional changes evoked by XIIth nerve injury were to a large extent prevented by intranuclear administration of LVV-miR-shRNA/nNOS. We suggest that nNOS up-regulation creates a repulsive NO gradient for synaptic boutons underlying most of the functional impairment undergone by injured motoneurons. This further strengthens the case for nNOS targeting as a plausible strategy for treatment of peripheral neuropaties and neurodegenerative disorders. [source]