Home About us Contact | |||
Growth Series (growth + series)
Selected AbstractsDendrogeomorphic reconstruction of past debris-flow activity using injured broad-leaved treesEARTH SURFACE PROCESSES AND LANDFORMS, Issue 4 2010Estelle Arbellay Abstract Tree-ring records from conifers have been regularly used over the last few decades to date debris-flow events. The reconstruction of past debris-flow activity was, in contrast, only very rarely based on growth anomalies in broad-leaved trees. Consequently, this study aimed at dating the occurrence of former debris flows from growth series of broad-leaved trees and at determining their suitability for dendrogeomorphic research. Results were obtained from gray alder (Alnus incana (L.) Moench), silver birch and pubescent birch (Betula pendula Roth and Betula pubescens Ehrh.), aspen (Populus tremula L.), white poplar, black poplar and gray poplar (Populus alba L., Populus nigra L. and Populus x canescens (Ait.) Sm.), goat willow (Salix caprea L.) and black elder (Sambucus nigra L.) injured by debris-flow activity at Illgraben (Valais, Swiss Alps). Tree-ring analysis of 104 increment cores, 118 wedges and 93 cross-sections from 154 injured broad-leaved trees allowed the reconstruction of 14 debris-flow events between AD 1965 and 2007. These events were compared with archival records on debris-flow activity at Illgraben. It appears that debris flows are very common at Illgraben, but only very rarely left the channel over the period AD 1965,2007. Furthermore, analysis of the spatial distribution of disturbed trees contributed to the identification of six patterns of debris-flow routing and led to the determination of preferential breakout locations of events. The results of this study demonstrate the high potential of broad-leaved trees for dendrogeomorphic research and for the assessment of the travel distance and lateral spread of debris-flow surges. Copyright © 2010 John Wiley & Sons, Ltd. [source] Morphological variations in a tooth family through ontogeny in Pleurodeles waltl (Lissamphibia, Caudata)JOURNAL OF MORPHOLOGY, Issue 9 2006Tiphaine Davit-Béal Abstract Most nonmammalian species replace their teeth continuously (so-called polyphyodonty), which allows morphological and structural modifications to occur during ontogeny. We have chosen Pleurodeles waltl, a salamander easy to rear in the laboratory, as a model species to establish the morphological foundations necessary for future molecular approaches aiming to understand not only molecular processes involved in tooth development and replacement, but also their changes, notably during metamorphosis, that might usefully inform studies of modifications of tooth morphology during evolution. In order to determine when (in which developmental stage) and how (progressively or suddenly) tooth modifications take place during ontogeny, we concentrated our observations on a single tooth family, located at position I, closest to the symphysis on the left lower jaw. We monitored the development and replacement of the six first teeth in a large growth series ranging from 10-day-old embryos (tooth I1) to adult specimens (tooth I6), using light (LM), scanning (SEM), and transmission electron (TEM) microscopy. A timetable of the developmental and functional period is provided for the six teeth, and tooth development is compared in larvae and young adults. In P. waltl the first functional tooth is not replaced when the second generation tooth forms, in contrast to what occurs for the later generation teeth, leading to the presence of two functional teeth in a single position during the first 2 months of life. Larval tooth I1 shows dramatically different features when compared to adult tooth I6: a dividing zone has appeared between the dentin cone and the pedicel; the pulp cavity has enlarged, allowing accommodation of large blood vessels; the odontoblasts are well organized along the dentin surface; tubules have appeared in the dentin; and teeth have become bicuspidate. Most of these modifications take place progressively from one tooth generation to the next, but the change from monocuspid to bicuspid tooth occurs during the tooth I3 to tooth I4 transition at metamorphosis. J. Morphol. © 2006 Wiley-Liss, Inc. [source] Dentition and tooth replacement pattern in Chalcides (Squamata; Scincidae)JOURNAL OF MORPHOLOGY, Issue 2 2003Sidney Delgado Abstract This study was undertaken as a prerequisite to investigations on tooth differentiation in a squamate, the Canarian scincid Chalcides. Our main goal was to determine whether the pattern of tooth replacement, known to be regular in lizards, could be helpful to predict accurately any stage of tooth development. A growth series of 20 laboratory-reared specimens, aged from 0.5 month after birth to about 6 years, was used. The dentition (functional and replacement teeth) was studied from radiographs of jaw quadrants. The number of tooth positions, the tooth number in relation to age and to seasons, and the size of the replacement teeth were recorded. In Chalcides, a single row of pleurodont functional teeth lies at the labial margin of the dentary, premaxillary, and maxillary. Whatever the age of the specimens, 16 tooth positions were recorded, on average, in each quadrant, suggesting that positions are maintained throughout life. Replacement teeth were numerous whatever the age and season, while the number of functional teeth was subject to variation. Symmetry of tooth development was evaluated by comparing teeth two by two from the opposite side in the four jaw quadrants of several specimens. Although the relative size of some replacement teeth fitted perfectly, the symmetry criterion was not reliable to predict the developmental stage of the opposite tooth, whether the pair of teeth compared was left,right or upper,lower. The best fit was found when comparing the size of successive replacement teeth from the front to the back of the jaw. Every replacement tooth that is 40,80% of its definitive size is followed, in the next position on the arcade, by a tooth that is, on average, 20% less developed. Considering teeth in alternate positions (even and odd series), each replacement tooth was a little more developed than the previous, more anterior, one (0.5,20% when the teeth are from 10,40% of their final size). The latter pattern showed that tooth replacement occurred in alternate positions from back to front, forming more or less regular rows (i.e., "Zahnreihen"). In Chalcides, the developmental stage of a replacement tooth in a position p can be accurately predicted provided the developmental stage of the replacement tooth in position p-1 or, to a lesser degree, in position p-2 is known. This finding will be particularly helpful when starting our structural and ultrastructural studies of tooth differentiation in this lizard. J. Morphol. 256:146,159, 2003. © 2003 Wiley-Liss, Inc. [source] Distribution and Quantity of Contractile Tissue in Postnatal Development of Rat Alveolar InterstitiumTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 1 2008Renée Dickie Abstract Alpha,smooth muscle actin (,-SMA) -expressing cells are important participants in lung remodeling, during both normal postnatal ontogeny and after injury. Developmental dysregulation of these contractile cells contributes to bronchopulmonary dysplasia in newborns, and aberrant recapitulation in adults of the normal ontogeny of these cells has been speculated to underlie disease and repair in mature lungs. The significance of airway smooth muscle has been widely investigated, but contractile elements within the pulmonary parenchyma, although also of structural and functional consequence in developing and mature lungs, are relatively unstudied and little quantitative information exists. Here, we quantify the areal density of ,-SMA expression in lung parenchyma and assess changes in its spatiotemporal distribution through postnatal ontogeny. Using an antibody against ,-SMA, we immunofluorescently labeled contractile elements in lung sections from a postnatal growth series of rats. Images were segmented using thresholded pixel intensity. Alpha-SMA areal density in the alveolar interstitium was calculated by dividing the area of ,-SMA,positive staining by the tissue area. The areal density of ,-SMA in 2-day neonates was 3.7%, almost doubled, to 7.2% by 21 days, and decreased to 3% in adults. Neonates had large, elongate concentrations of ,-SMA, and ,-SMA localized both at septal tips and within the interstitium. In adults, individual areas of ,-SMA expression were smaller and more round, and located predominately in alveolar ducts, at alveolar ends and bends. The results are consistent with increasing ,-SMA expression during the period of peak myofibroblast activity, corresponding to the phase of rapid alveolarization in the developing lung. Anat Rec, 291:83,93, 2007. © 2007 Wiley-Liss, Inc. [source] Ontogeny and phyletic size change in living and fossil lemursAMERICAN JOURNAL OF PRIMATOLOGY, Issue 2 2010Matthew J. Ravosa Abstract Lemurs are notable for encompassing the range of body-size variation for all primates past and present,close to four orders of magnitude. Benefiting from the phylogenetic proximity of subfossil lemurs to smaller-bodied living forms, we employ allometric data from the skull to probe the ontogenetic bases of size differentiation and morphological diversity across these clades. Building upon prior pairwise comparisons between sister taxa, we performed the first clade-wide analyses of craniomandibular growth allometries in 359 specimens from 10 lemuroids and 176 specimens from 8 indrioids. Ontogenetic trajectories for extant forms were used as a criterion of subtraction to evaluate morphological variation, and putative adaptations among sister taxa. In other words, do species-level differences in skull form result from the differential extension of common patterns of relative growth? In lemuroids, a pervasive pattern of ontogenetic scaling is observed for facial dimensions in all genera, with three genera also sharing relative growth trajectories for jaw proportions (Lemur, Eulemur, Varecia). Differences in masticatory growth and form characterizing Hapalemur and fossil Pachylemur likely reflect dietary factors. Pervasive ontogenetic scaling characterizes the facial skull in extant Indri, Avahi, and Propithecus, as well as their larger, extinct sister taxa Mesopropithecus and Babakotia. Significant interspecific differences are observed in the allometry of indrioid masticatory proportions, with variation in the mechanical advantage of the jaw adductors and stress-resisting elements correlated with diet. As the growth series and adult data are largely coincidental in each clade, interspecific variation in facial form may result from selection for body-size differentiation among sister taxa. Those cases where trajectories are discordant identify potential dietary adaptations linked to variation in masticatory forces during chewing and biting. Although such dissociations highlight selection to uncouple shared ancestral growth patterns, they occur largely via transpositions and retention of primitive size-shape covariation patterns or relative growth coefficients. Am. J. Primatol. 72:161,172, 2010. © 2009 Wiley-Liss, Inc. [source] |