Growth Chamber (growth + chamber)

Distribution by Scientific Domains

Terms modified by Growth Chamber

  • growth chamber experiment

  • Selected Abstracts


    Influence of PAR and UV-A in Determining Plant Sensitivity and Photomorphogenic Responses to UV-B Radiation ,,

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2004
    Donald T. Krizek
    ABSTRACT The role of photosynthetically active radiation (400-700 nm) (PAR) in modifying plant sensitivity and photomorphogenic responses to ultraviolet-B (280,320 nm) (UV-B) radiation has been examined by a number of investigators, but few studies have been conducted on ultraviolet-A (320-400 nm) (UV-A), UV-B and PAR interactions. High ratios of PAR-UV-B and UV-A-UV-B have been found to be important in ameliorating UV-B damage in both terrestrial and aquatic plants. Growth chamber and greenhouse studies conducted at low PAR, low UV-A and high UV-B often show exaggerated UV-B damage. Spectral balance of PAR, UV-A and UV-B has also been shown to be important in determining plant sensitivity in field studies. In general, one observes a reduction in total biomass and plant height with decreasing PAR and increasing UV-B. The protective effects of high PAR against elevated UV-B may also be indirect, by increasing leaf thickness and the concentration of flavonoids and other phenolic compounds known to be important in UV screening. The quality of PAR is also important, with blue light, together with UV-A radiation, playing a key role in photorepair of DNA lesions. Further studies are needed to determine the interactions of UV-A, UV-B and PAR. [source]


    Laboratory persistence and fate of fluoxetine in aquatic environments

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2006
    Jeong-Wook Kwon
    Abstract The persistence and fate of fluoxetine, a selective serotonin reuptake inhibitor, has been investigated in laboratory-scale experiments, including studies with various aqueous solutions, water/sediment systems, and activated sludge-amended medium. The samples were placed in the dark and/or in a growth chamber fitted with fluorescent lamps simulating the ultraviolet output of sunlight. Over a period of 30 d, fluoxetine was hydrolytically and photolytically stable in all aqueous solutions except synthetic humic water (pH 7), in which the degradation rate was increased by approximately 13-fold in comparison with buffered solutions at the same pH. Fluoxetine rapidly dissipated from the aqueous phase in water/sediment systems, primarily because of distribution to sediments. The dissipation rate from the aqueous phase was similar between light and dark systems, indicating a low contribution of photodegradation to the dissipation of fluoxetine in this system. The potential impact of fluoxetine in aquatic environments would be decreased because of adsorption to sediments. Based on results of ready-biodegradability investigations, fluoxetine would not be expected to rapidly biodegrade in wastewater treatment plants. A photoproduct was detected only in a sample of synthetic humic water and was identified as norfluoxetine formed by demethylation. Results indicate that fluoxetine is relatively recalcitrant to hydrolysis, photolysis, and microbial degradation and that it is rapidly removed from surface waters by adsorption to sediment, where it appears to be persistent. [source]


    Systemic induced resistance in Monterey pine

    FOREST PATHOLOGY, Issue 2 2001
    Bonello
    The pathogenic fungus Fusarium circinatum causes pitch canker of pines. This study shows that Monterey pine (Pinus radiata), one of the most economically important pine species in the world and the main host in California, responds to infection by Fusarium circinatum in a manner consistent with systemic induced resistance. Repeated mechanical inoculations of the same trees in the field produced progressively smaller lesions over a period of 2 years, with mean lesion length decreasing significantly from 2.89 ± 0.42 cm to 1.04 ± 0.17 cm. In the greenhouse, predisposing inoculations with the pathogen induced a significant lesion length reduction, from 5.5 ± 0.21 cm in control trees to 4.46 ± 0.36 cm in predisposed trees over a period of 6 weeks. Under constant environmental conditions in a growth chamber, predisposing inoculations also induced a significant reduction in lesion size, from 3.01 ± 0.15 cm to 2.55 ± 0.18 cm over a period of 4 weeks. This is the first unequivocal report of systemic induced resistance in a conifer. Résistance systémique induite chez le Pinus radiata Fusarium circinatum est l'agent causal du ,pitch canker' des pins. Le Pinus radiata est l'un des pins les plus importants économiquement dans le monde, et le principal hôte de la maladie en Californie. Cette étude montre que P. radiata réagit régulièrement à l'infection de Fusarium circinatum d'une façon qui peut être de la résistance systémique induite. Des inoculations mécaniques répétées sur de mêmes arbres en nature ont produit progressivement des lésions dont la taille diminuait au cours d'une période de deux ans; la longueur des lésions diminuait significativement de 2.89 ± 0.42 cm à 1.04 ± 0.17 cm. En serre, des inoculations de pré-conditionnement avec le parasite ont entraîné une réduction significative de la longueur des lésions, de 5.5 ± 0.21 cm chez les témoins à 4.46 ± 0.36 cm chez les arbres pré-conditionnés, au cours d'une période de six semaines. En conditions environnementales constantes en chambre climatique, les inoculations de pré-conditionnement ont aussi induit une réduction significative de la taille des lésions, de 3.01 ± 0.15 cm à 2.55 ± 0.18 cm, en une période de 4 semaines. Ceci est la première mention non équivoque d'une résistance systémique induite chez un conifère. Induzierte systemische Resistenz in Monterey-Kiefer Der pathogene Pilz Fusarium circinatum verursacht einen Krebs an Kiefern (pitch canker). Die vorliegende Untersuchung zeigt, dass die Monterey-Kiefer (Pinus radiata), eine der ökonomisch wichtigsten Kiefernarten der Welt und Hauptwirt in Kalifornien, auf Infektionen durch Fusarium circinatum mit induzierter systemischer Resistenz reagiert. Wiederholte mechanische Inokulationen der gleichen Bäume im Feld führten zu zunehmend kleineren Läsionen über einen Beobachtungszeitraum von zwei Jahren. Die Länge der Läsionen nahm von 2.89 ± 0.42 cm auf 1.04 ± 0.17 cm signifikant ab. Im Gewächshaus bewirkten prädisponierende Inokulationen mit dem Pathogen eine signifikante Reduktion der Läsionslänge von 5.5 ± 0.21 cm in den Kontrollen auf 4.46 ± 0.36 cm in den prädisponierten Pflanzen über einen Beobachtungszeitraum von sechs Wochen. Prädisponierende Inokulationen bewirkten auch unter konstanten Umweltbedingungen in einer Klimakammer eine signifikante Abnahme der Läsionsgrösse von 3.01 ± 0.15 cm auf 2.55 ± 0.18 über eine Periode von vier Wochen. Es handelt sich hier um den ersten eindeutigen Nachweis von induzierter systemischer Resistenz bei einer Konifere. [source]


    Modelling carbon balances of coastal arctic tundra under changing climate

    GLOBAL CHANGE BIOLOGY, Issue 1 2003
    Robert F. Grant
    Abstract Rising air temperatures are believed to be hastening heterotrophic respiration (Rh) in arctic tundra ecosystems, which could lead to substantial losses of soil carbon (C). In order to improve confidence in predicting the likelihood of such loss, the comprehensive ecosystem model ecosys was first tested with carbon dioxide (CO2) fluxes measured over a tundra soil in a growth chamber under various temperatures and soil-water contents (,). The model was then tested with CO2 and energy fluxes measured over a coastal arctic tundra near Barrow, Alaska, under a range of weather conditions during 1998,1999. A rise in growth chamber temperature from 7 to 15 °C caused large, but commensurate, rises in respiration and CO2 fixation, and so no significant effect on net CO2 exchange was modelled or measured. An increase in growth chamber , from field capacity to saturation caused substantial reductions in respiration but not in CO2 fixation, and so an increase in net CO2 exchange was modelled and measured. Long daylengths over the coastal tundra at Barrow caused an almost continuous C sink to be modelled and measured during most of July (2,4 g C m,2 d,1), but shortening daylengths and declining air temperatures caused a C source to be modelled and measured by early September (,1 g C m,2 d,1). At an annual time scale, the coastal tundra was modelled to be a small C sink (4 g C m,2 y,1) during 1998 when average air temperatures were 4 °C above normal, and a larger C sink (16 g C m,2 y,1) during 1999 when air temperatures were close to long-term normals. During 100 years under rising atmospheric CO2 concentration (Ca), air temperature and precipitation driven by the IS92a emissions scenario, modelled Rh rose commensurately with net primary productivity (NPP) under both current and elevated rates of atmospheric nitrogen (N) deposition, so that changes in soil C remained small. However, methane (CH4) emissions were predicted to rise substantially in coastal tundra with IS92a-driven climate change (from ,20 to ,40 g C m,2 y,1), causing a substantial increase in the emission of CO2 equivalents. If the rate of temperature increase hypothesized in the IS92a emissions scenario had been raised by 50%, substantial losses of soil C (,1 kg C m,2) would have been modelled after 100 years, including additional emissions of CH4. [source]


    Responses of leaf nitrogen concentration and specific leaf area to atmospheric CO2 enrichment: a retrospective synthesis across 62 species

    GLOBAL CHANGE BIOLOGY, Issue 7 2002
    Xiwei Yin
    Abstract Knowledge of leaf responses to elevated atmospheric [CO2] (CO2 concentration) is integral to understanding interactions between vegetation and global change. This work deals with responses of leaf mass-based nitrogen concentration (Nm) and specific leaf area (SLA). It assesses the statistical significance of factors perceived as influential on the responses, and quantifies how the responses vary with the significant factors identified, based on 170 data cases of 62 species compiled from the literature. Resultant equations capture about 41% of the variance in the data for percent responses of Nm and SLA, or about 95% of the variance for Nm and SLA at 57,320% normal [CO2]; these performance statistics also hold for leaf area-based N concentration and specific leaf weight. The equations generalize that: (i) both Nm and SLA decline as [CO2] increases; (ii) proportional decline of Nm is greater with deciduous woody species and with plants of normally low Nm, increases with pot size in growth chamber and greenhouse settings and with temperature and photosynthetic photon flux density (PPFD), and is mitigated by N fertilization; and (iii) proportional decline of SLA depends on pot size and PPFD similarly to Nm, increases with leaf life span and water vapour pressure deficit in enclosed experiments, and decreases with prolonged exposure to elevated [CO2] among broadleaf woody species in field conditions. The results highlight great uncertainty in the percent-response data and reveal the potential feasibility to estimate Nm and SLA at various magnitudes of elevated [CO2] from a few key plant and environmental factors of broad data bases. [source]


    Spatial and Temporal Quantitative Analysis of Cell Division and Elongation Rate in Growing Wheat Leaves under Saline Conditions

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 1 2008
    Yuncai Hu
    Abstract Leaf growth in grasses is determined by the cell division and elongation rates, with the duration of cell elongation being one of the processes that is the most sensitive to salinity. Our objective was to investigate the distribution profiles of cell production, cell length and the duration of cell elongation in the growing zone of the wheat leaf during the steady growth phase. Plants were grown in loamy soil with or without 120 mmol/L NaCl in a growth chamber, and harvested at day 3 after leaf 4 emerged. Results show that the elongation rate of leaf 4 was reduced by 120 mmol/L NaCl during the steady growth phase. The distribution profile of the lengths of abaxial epidermal cells of leaf 4 during the steady growth stage shows a sigmoidal pattern along the leaf axis for both treatments. Although salinity did not affect or even increased the length of the epidermal cells in some locations in the growth zone compared to the control treatment, the final length of the epidermal cells was reduced by 14% at 120 mmol/L NaCl. Thus, we concluded that the observed reduction in the leaf elongation rate derived in part from the reduced cell division rate and either the shortened cell elongation zone or shortened duration of cell elongation. This suggests that more attention should be paid to the effects of salinity on those properties of cell production and the period of cell maturation that are related to the properties of cell wall. [source]


    Salt-resistant and salt-sensitive wheat genotypes show similar biochemical reaction at protein level in the first phase of salt stress

    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2006
    Muhammad Saqib
    Abstract Salinity has a two-phase effect on plant growth, an osmotic effect due to salts in the outside solution and ion toxicity in a second phase due to salt build-up in transpiring leaves. To elucidate salt-resistance mechanisms in the first phase of salt stress, we studied the biochemical reaction of salt-resistant and salt-sensitive wheat (Triticum aestivum L.) genotypes at protein level after 10 d exposure to 125 mM,NaCl salinity (first phase of salt stress) and the variation of salt resistance among the genotypes after 30 d exposure to 125 mM,NaCl salinity (second phase of salt stress) in solution culture experiments in a growth chamber. The three genotypes differed significantly in absolute and relative shoot and root dry weights after 30 d exposure to NaCl salinity. SARC-1 produced the maximum and 7-Cerros the minimum shoot dry weights under salinity relative to control. A highly significant negative correlation (r2 = ,0.99) was observed between salt resistance (% shoot dry weight under salinity relative to control) and shoot Na+ concentration of the wheat genotypes studied. However, the salt-resistant and salt-sensitive genotypes showed a similar biochemical reaction at the level of proteins after 10 d exposure to 125 mM NaCl. In both genotypes, the expression of more than 50% proteins was changed, but the difference between the genotypes in various categories of protein change (up-regulated, down-regulated, disappeared, and new-appeared) was only 1%,8%. It is concluded that the initial biochemical reaction to salinity at protein level in wheat is an unspecific response and not a specific adaptation to salinity. [source]


    Presubmergence and green manure affect the transformations of nitrogen-15-labeled urea under lowland soil conditions

    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2003
    H.S. Thind
    Abstract The effect of presubmergence and green manuring on various processes involved in [15N]-urea transformations were studied in a growth chamber after [15N]-urea application to floodwater. Presubmergence for 14 days increased urea hydrolysis rates and floodwater pH, resulting in higher NH3 volatilization as compared to without presubmergence. Presubmergence also increased nitrification and subsequent denitrification but lower N assimilation by floodwater algae caused higher gaseous losses. Addition of green manure maintained higher NH4+ -N concentration in floodwater mainly because of lower nitrification rates but resulted in highest NH3 volatilization losses. Although green manure did not affect the KCl extractable NH4+ -N from applied fertilizer, it maintained higher NH4+ -N content due to its decomposition and increased mineralization of organic N. After 32 days about 36.9,% (T1), 23.9,% (T2), and 36.4,% (T3) of the applied urea N was incorporated in the pool of soil organic N in treatments. It was evident that the presubmergence has effected the recovery of applied urea N. No translation. [source]


    Potential of bacterial indoleacetic acid to induce adventitious shoots in plant tissue culture

    LETTERS IN APPLIED MICROBIOLOGY, Issue 2 2007
    B. Ali
    Abstract Aims:, The main aim of this study was to investigate the possible role of indoleacetic acid (IAA) from bacteria to induce in vitro adventitious shoots in internodal explants of Brassica oleracea L. Methods and Results:, Culture supernatant of Halomonas sp. RE1 and Halomonas sp. HT1 that contain 21 and 40 ,g ml,1 IAA, respectively, was used to supplement Murashige and Skoog (MS) medium. Two combinations that were supplemented with bacterial supernatant (BS) are MS + BS and MS + BS + 10%CW (coconut water) while basal MS medium was used as control. The amounts of BS used in this experiment were 50, 100, 150 and 200 ,l in 5 ml MS medium in each combination. In vitro -grown internodal explants of B. oleracea were inoculated on these media combinations and incubated in a growth chamber at 25 ± 1°C and exposed to 16-h cool fluorescent light. After 5,6 weeks of incubation adventitious shoot induction was observed in all treatments that were supplemented with BS as compared with the controls where very low response was observed. The frequency of shoot induction was high in media that were supplemented with 10%CW in the presence of bacterial auxin. Conclusions:, It was concluded that IAA of microbial origin has the potential to induce adventitious shoots in internodal explants. Significance and Impact of the Study:, IAA from bacteria can be effectively used in plant tissue culture; especially a combination of MS + BS + 10%CW is very cost-effective as compared with synthetic phytohormones for in vitro studies. [source]


    PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit

    NEW PHYTOLOGIST, Issue 3 2006
    Christine Granier
    Summary ,,The high-throughput phenotypic analysis of Arabidopsis thaliana collections requires methodological progress and automation. Methods to impose stable and reproducible soil water deficits are presented and were used to analyse plant responses to water stress. ,,Several potential complications and methodological difficulties were identified, including the spatial and temporal variability of micrometeorological conditions within a growth chamber, the difference in soil water depletion rates between accessions and the differences in developmental stage of accessions the same time after sowing. Solutions were found. ,,Nine accessions were grown in four experiments in a rigorously controlled growth-chamber equipped with an automated system to control soil water content and take pictures of individual plants. One accession, An1, was unaffected by water deficit in terms of leaf number, leaf area, root growth and transpiration rate per unit leaf area. ,,Methods developed here will help identify quantitative trait loci and genes involved in plant tolerance to water deficit. [source]


    Low-cost growth of AlN using vectored-flow epitaxy for the purpose of water sterilisation in a rural environment

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 2 2008
    Matthew Branch
    Abstract The high V/III ratio required for the Metalorganic Chemical Vapour Deposition (MOCVD) growth of AlN using the precursors trimethylaluminium and ammonia have contributed to the excessive costs of producing ultra violet light emitting diodes (UVLEDs) which can be used in water purification. This paper introduces a novel growth technique, vectored-flow epitaxy (VFE), which maintains the separation between gaseous reagents within the growth chamber. In addition, the VFE technique, which employs atmospheric pressure growth, also pre cracks the ammonia prior to injection and thereby significantly reduces the high V/III ratio required for the growth of this material. The pre cracked ammonia also removes the need for high growth temperatures, which is known to be necessary for its thermal decomposition. With this technique, 2 ,m/h growth is possible at a V/III ratio of 50. These advances will contribute to the development of a cost-effective solution to the treatment of drinking water in a rural environment. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Response of superoxide dismutase isoenzymes in tomato plants (Lycopersicon esculentum) during thermo-acclimation of the photosynthetic apparatus

    PHYSIOLOGIA PLANTARUM, Issue 3 2007
    Daymi Camejo
    Seedlings of Lycopersicon esculentum Mill. var. Amalia were grown in a growth chamber under a photoperiod of 16 h light at 25°C and 8 h dark at 20°C. Five different treatments were applied to 30-day-old plants: Control treatment (plants maintained in the normal growth conditions throughout the experimental time), heat acclimation (plants exposed to 35°C for 4 h in dark for 3 days), dark treatment (plants exposed to 25°C for 4 h in dark for 3 days), heat acclimation plus heat shock (plants that previously received the heat acclimation treatment were exposed to 45°C air temperature for 3 h in the light) and dark treatment plus heat shock (plants that previously received the dark treatment were exposed to 45°C air temperature for 3 h in the light). Only the heat acclimation treatment increased the thermotolerance of the photosynthesis apparatus when the heat shock (45°C) was imposed. In these plants, the CO2 assimilation rate was not affected by heat shock and there was a slight and non-significant reduction in maximum carboxylation velocity of Rubisco (Vcmax) and maximum electron transport rate contributing to Rubisco regeneration (Jmax). However, the plants exposed to dark treatment plus heat shock showed a significant reduction in the CO2 assimilation rate and also in the values of Vcmax and Jmax. Chlorophyll fluorescence measurements showed increased thermotolerance in heat-acclimated plants. The values of maximum chlorophyll fluorescence (Fm) were not modified by heat shock in these plants, while in the dark-treated plants that received the heat shock, the Fm values were reduced, which provoked a significant reduction in the efficiency of photosystem II. A slight rise in the total superoxide dismutase (SOD) activity was found in the plants that had been subjected to both heat acclimation and heat shock, and this SOD activity was significantly higher than that found in the plants subjected to dark treatment plus heat shock. The activity of Fe-SOD isoenzymes was most enhanced in heat-acclimated plants but was unaltered in the plants that received the dark treatment. Total CuZn-SOD activity was reduced in all treatments. Darkness had an inhibitory effect on the Mn-SOD isoenzyme activity, which was compensated by the effect of a rise in air temperature to 35°C. These results show that the heat tolerance of tomatoplants may be increased by the previous imposition of a moderately high temperature and could be related with the thermal stability in the photochemical reactions and a readjustment of Vcmax and Jmax. Some isoenzymes, such as the Fe-SODs, may also play a role in the development of heat-shock tolerance through heat acclimation. In fact, the pattern found for these isoenzymes in heat-acclimated Amalia plants was similar to that previously described in other heat-tolerant tomato genotypes. [source]


    Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress conditions

    PHYSIOLOGIA PLANTARUM, Issue 2 2004
    Liang Ju Wang
    When melon seedlings (Cucumis melo L. Ximiya No. 1) were cultured in a growth chamber with about 150 µmol m,2 s,1 photon flux density, the leaf photosynthetic ability reduced dramatically as leaf position decreased from the top. The application of 5-aminolevulinic acid (ALA) solutions significantly increased the net photosynthetic rate (Pn) as well as apparent quantum yield (AQY), carboxylation efficiency (CE) and stomata conductance (Gs). After irrigation with 10 ml of ALA solution (10 mg l,1 or 100 mg l,1) per container filled with approximately 250 g clean sand for 3 days, the leaf Pn was about 40,200% higher than that of controls, and AQY, CE and Gs increased 21,271%, 55,210% and 60,335%, respectively. Furthermore, ALA treatments increased leaf chlorophyll content and soluble sugar levels, as well as the rate of dark respiration, but decreased the rate of respiration under light. On the other hand, after melon seedlings that had been cultured in the chamber suffered chilling at 8°C for 4 h and then recovered at 25,30°C for 2 and 20 h, the Pn of the water-irrigated plants was only 12,18% and 37,47%, respectively, compared with the initial Pn before chilling treatment. If the seedlings underwent the same treatment but with ALA (10 mg l,1), the respective Pn was 22,38% and 76,101%, compared with that of the control before chilling stress. If chilling was prolonged for 6 h, the ALA-pre-treated plants only showed a few symptoms in the leaf margins whereas all water-irrigated plants died, which suggested that ALA presumably promoted chilling tolerance of the plants under low light. [source]


    DNA damage and photosynthesis in Antarctic and Arctic Sanionia uncinata (Hedw.) Loeske under ambient and enhanced levels of UV-B radiation

    PLANT CELL & ENVIRONMENT, Issue 12 2002
    D. LUD
    Abstract The response of the bipolar moss Sanionia uncinata (Hedw.) Loeske to ambient and enhanced UV-B radiation was investigated at an Antarctic (Léonie Island, 67°35, S, 68°20, W) and an Arctic (Ny-Alesund, 78°55, N, 11°56, E) site, which differed in ambient UV-B radiation (UV-BR: 280,320 nm) levels. The UV-BR effects on DNA damage and photosynthesis were investigated in two types of outdoor experiments. First of all, sections of turf of S. uncinata were collected in an Arctic and Antarctic field site and exposed outdoors to ambient and enhanced UV-BR for 2 d using UV-B Mini-lamps. During these experiments, chlorophyll a fluorescence, chlorophyll concentration and cyclobutyl pyrimidine dimer (CPD) formation were measured. Secondly, at the Antarctic site, a long-term filter experiment was conducted to study the effect of ambient UV-BR on growth and biomass production. Additionally, sections of moss turf collected at both the Antarctic and the Arctic site were exposed to UV-BR in a growth chamber to study induction and repair of CPDs under controlled conditions. At the Antarctic site, a summer midday maximum of 2·1 W m,2 of UV-BR did not significantly affect effective quantum yield (,F/Fm,) and the ratio of variable to maximal fluorescence (Fv/Fm). The same was found for samples of S. uncinata exposed at the Arctic site, where summer midday maxima of UV-BR were about 50% lower than at the Antarctic site. Exposure to natural UV-BR in summer did not increase CPD values significantly at both sites. Although the photosynthetic activity remained largely unaffected by UV-B enhancement, DNA damage clearly increased as a result of UV-B enhancement at both sites. However, DNA damage induced during the day by UV-B enhancement was repaired overnight at both sites. Results from the long-term filter experiment at the Antarctic site indicated that branching of S. uncinata was reduced by reduction of ambient summer levels of UV-BR, whereas biomass production was not affected. Exposure of specimens collected from both sites to UV-BR in a growth chamber indicated that Antarctic and Arctic S. uncinata did not differ in UV-BR-induced DNA damage. It was concluded that S. uncinata from both the Antarctic and the Arctic site is well adapted to ambient levels of UV-BR. [source]


    Hypomethylation and hypermethylation of the tandem repetitive 5S rRNA genes in Arabidopsis

    THE PLANT JOURNAL, Issue 2 2008
    Isabelle Vaillant
    Summary 5S ribosomal DNA (5S rDNA) is organized in tandem repeats on chromosomes 3, 4 and 5 in Arabidopsis thaliana. One part of the 5S rDNA is located within the heterochromatic chromocenters, and the other fraction forms loops with euchromatic features that emanate from the chromocenters. We investigated whether the A. thaliana heterochromatin, and particularly the 5S rDNA, is modified when changing the culture conditions (cultivation in growth chamber versus greenhouse). Nuclei from challenged tissues displayed larger total, as well as 5S rDNA, heterochromatic fractions, and the DNA methyltransferase mutants met1 and cmt3 had different impacts in Arabidopsis. The enlarged fraction of heterochromatic 5S rDNA was observed, together with the reversal of the silencing of some 5S rRNA genes known as minor genes. We observed hypermethylation at CATG sites, and a concomitant DNA hypomethylation at CG/CXG sites in 5S rDNA. Our results show that the asymmetrical hypermethylation is correlated with the ageing of the plants, whereas hypomethylation results from the growth chamber/culture conditions. In spite of severely reduced DNA methylation, the met1 mutant revealed no increase in minor 5S rRNA transcripts in these conditions. The increasing proportion of cytosines in asymmetrical contexts during transition from the euchromatic to the heterochromatic state in the 5S rDNA array suggests that 5S rDNA units are differently affected by the (hypo and hyper)methylation patterns along the 5S rDNA locus. This might explain the different behaviour of 5S rDNA subpopulations inside a 5S array in terms of chromatin compaction and expression, i.e. some 5S rRNA genes would become derepressed, whereas others would join the heterochromatic fraction. [source]


    An approach to the nonlinear dynamics of Russian wheat aphid population growth with the cusp catastrophe model

    ENTOMOLOGICAL RESEARCH, Issue 3 2009
    Z. S. MA
    Abstract Many insect field populations, especially aphids, often exhibit irregular and even catastrophic fluctuations. The objective of the present study is to explore whether or not the population intrinsic rates of growth (rm) obtained under laboratory conditions can shed some light on the irregular changes of insect field populations. We propose to use the catastrophe theory, one of the earliest nonlinear dynamics theories, to answer the question. To collect the necessary data, we conducted a laboratory experiment to investigate population growth of the Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), in growth chambers. The experiment was designed as the factorial combinations of five temperatures and five host plant-growth stages (25 treatments in total): 1800 newly born RWA nymphs arranged in the 25 treatments (each treatment with 72 repetitions) were observed for their development, reproduction and survival through their entire lifetimes. After obtaining the population intrinsic rates of growth (rm) from the experimental data under various environmental conditions, we built a cusp catastrophe model for RWA population growth by utilizing rm as the system state variable, and temperature and host plant-growth stage as control variables. The cusp catastrophe model suggests that RWA population growth is intrinsically catastrophic, and dramatic jumps from one state to another might occur even if the temperature and plant-growth stage change smoothly. Other basic behaviors of the cusp catastrophe model, such as catastrophic jumps, hystersis and divergence, are also expected in RWA populations. These results suggest that the answer to the previously proposed question should be "yes". [source]


    Environmental warming increases invasion potential of alpine lake communities by imported species

    GLOBAL CHANGE BIOLOGY, Issue 11 2005
    Angela M. Holzapfel
    Abstract Global warming increasingly pressures species to show adaptive migratory responses. We hypothesized that warming increases invasion of alpine lakes by low-elevation montane zooplankton by suppressing native competitors and predators. This hypothesis was tested by conducting a two-factor experiment, consisting of a warming treatment (13 vs. 20°C) crossed with three invasion levels (alpine only, alpine+montane, montane only), in growth chambers over a 28-day period. Warming significantly reduced total consumer biomass owing to the decline of large alpine species, resulting in greater autotrophic abundance. Significant temperature-invasion interactions occurred as warming suppressed alpine zooplankton, while stimulating certain imported species. Herbivorous invaders suppressed functionally similar alpine species while larger native omnivores reduced invasion by smaller taxa. Warming did not affect total invader biomass because imported species thrived under ambient and warmed alpine conditions. Our findings suggest that the adaptability of remote alpine lake communities to global warming is limited by species dispersal from lower valleys, or possibly nearby warmer alpine ponds. [source]


    Sex-specific physiological and growth responses to elevated atmospheric CO2 in Silene latifolia Poiret

    GLOBAL CHANGE BIOLOGY, Issue 4 2003
    XIANZHONG WANG
    Abstract Dioecy is found in nearly half of the angiosperm families, but little is known about how rising atmospheric CO2 concentration will affect male and female individuals of dioecious species. We examined gender-specific physiological and growth responses of Silene latifolia Poiret, a widespread dioecious species, to a doubled atmospheric CO2 concentration in environmentally controlled growth chambers. Elevated CO2 significantly increased photosynthesis in both male and female plants and by a similar magnitude. Males and females did not differ in net photosynthetic rate, but females had significantly greater biomass production than males, regardless of CO2 concentrations. Vegetative mass increased by 39% in males and in females, whereas reproductive mass increased by 82% in males and 97% in females at elevated CO2. As a result, proportionately more carbon was allocated to reproduction in male and female plants at elevated CO2. Higher CO2 increased individual seed mass significantly, but had no effect on the number or mass of seeds per female plant. Our results demonstrated that rising atmospheric CO2 will alter the allocation patterns in both male and female S. latifolia Poiret plants by shifting proportionally more photosynthate to reproduction. [source]


    Soil Temperature and Planting Depth Effects on Tef Emergence

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 3 2009
    S. Evert
    Abstract Tef [Eragrostis tef (Zucc.) Trotter] is an annual C4 grass crop that originated in Ethiopia. It has potential as a grain crop in the Great Plains because of its tolerance to drought and high temperatures. In Ethiopia, tef seed is typically broadcast on the soil surface and lightly incorporated. Shallow planting depths are used because the seed is very small and emergence can be limited by soil crusting. If planting equipment is to be used, planting depth may be important for successful tef production. The objective of this study was to identify optimal depths and soil temperatures to aid in developing tef planting recommendations for the central Plains. Tef was planted at five depths (0, 0.6, 1.3, 2.5 and 5.0 cm) in pots filled with a silt loam soil, and pots were placed in growth chambers at four temperature regimes (day/night: 15/19 °C; 19/23 °C; 23/27 °C and 27/31 °C). No plants emerged from the 5.0-cm depth, so this depth was not included in the analysis. Emergence was greatest for planting depths of 0.6 and 1.3 cm and lower at 0 and 2.5 cm depths. Temperature did not affect final emergence, measured 21 days after planting (DAP), but did influence emergence rates during the first 9 DAP. Plant dry matter production increased as planting depth increased, but plant dry matter per pot was not different among planting depths greater than 0.9 cm, suggesting that compensation between plants across different plant densities began early in the plants' life cycles. Our results show that tef seed can emerge from depths between 0.6 and 1.3 cm and that soil temperatures below 19 °C can slow emergence but should not affect final stands. [source]


    Die Blattanatomie eines schnell und eines langsam wachsenden Grases in Abhängigkeit von der Stickstoffversorgung

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2001
    G. Schulte auf'm Erley
    Leaf anatomy of a fast- and a slow-growing grass as dependent on nitrogen supply The grass species Lolium perenne and Festuca rubra, originating from habitats with differing N-availability, differ in their relative growth rate. This is mainly caused by the higher specific leaf area of L. perenne compared to F. rubra. The leaf anatomy of both species was further investigated. The species were raised in growth chambers under high and low N-supply. The higher specific leaf area of L. perenne (27 mm2 mg,1) in relation to F. rubra (14 mm2 mg,1) was mainly caused by a lower leaf density (0.23 vs. 0.33 mg mm,3). The level of N-supply influenced both leaf density and leaf thickness. The leaf volume of L. perenne comprised higher fractions of epidermis and lower fractions of mesophyll and intercellular space compared to F. rubra. However, the discrepancy in leaf density between the species could not be explained by anatomical differences. Under low N-supply, the leaves of both species had higher amounts of vascular bundles and fibre cells and lower amounts of intercellular space, which partly explained the higher density of the leaves. It is concluded, that thinner cell walls and higher amounts of cytoplasm cause the higher specific leaf area of L. perenne. Die Grasarten Lolium perenne und Festuca rubra, die auf Standorten mit unterschiedlicher N-Verfügbarkeit beheimatet sind, unterscheiden sich in ihrer relativen Wachstumsrate. Der Hauptgrund dafür liegt in der höheren spezifischen Blattfläche von L. perenne gegenüber F. rubra. Von beiden Arten wurde die Blattanatomie näher untersucht, nachdem sie in Klimakammern unter einer hohen und einer niedrigen N-Versorgungsstufe angezogen worden waren. Es zeigte sich, daß sich die höhere spezifische Blattfläche von L. perenne (27 mm2 mg,1) gegenüber F. rubra (14 mm2 mg,1) auf eine niedrigere Blattdichte zurückführen ließ (0,23 gegenüber 0,33 mg mm,3). Die Höhe der N-Versorgung beeinflußte sowohl die Blattdichte als auch die Blattdicke. Die Blätter von L. perenne hatten gegenüber denen von F. rubra höhere Volumenanteile an Epidermis und geringere Anteile an Mesophyll und Interzellularen. Die Unterschiede in der Blattdichte zwischen den Spezies ließen sich hierdurch nicht erklären. Unter niedriger N-Versorgung hatten die Blätter beider Arten höhere Anteile an Leit- und Faserbündeln und weniger Interzellularraum, was die höhere Blattdichte unter niedriger N-Versorgung teilweise erklärt. Es wird gefolgert, daß insgesamt dünnere Zellwände und mehr Cytoplasma die höhere spezifische Blattfläche von L. perenne verursachen. [source]


    Differential Responses of the Activities of Antioxidant Enzymes to Thermal Stresses between Two Invasive Eupatorium Species in China

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 4 2008
    Ping Lu
    Abstract The effect of thermal stress on the antioxidant system was investigated in two invasive plants, Eupatorium adenophorum Spreng. and E. odoratum L. The former is sensitive to high temperature, whereas the latter is sensitive to low temperature. Our aim was to explore the relationship between the response of antioxidant enzymes and temperature in the two invasive weeds with different distribution patterns in China. Plants were transferred from glasshouse to growth chambers at a constant 25 °C for 1 week to acclimatize to the environment. For the heat treatments, temperature was increased stepwise to 30, 35, 38 and finally to 42 °C. For the cold treatments, temperature was decreased stepwise to 20, 15, 10 and finally to 5 °C. Plants were kept in the growth chambers for 24 h at each temperature step. In E. adenophorum, the coordinated increase of the activities of antioxidant enzymes was effective in protecting the plant from the accumulation of active oxygen species (AOS) at low temperature, but the activities of catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR), and monodehydroascorbate reductase (MDAR) were not accompanied by the increase of superoxide dismutase (SOD) during the heat treatments. As a result, the level of lipid peroxidation in E. adenophorum was higher under heat stress than under cold stress. In E. odoratum, however, the lesser degree of membrane damage, as indicated by low monodehydroascorbate content, and the coordinated increase of the oxygen. Detoxifying enzymes were observed in heat-treated plants, but the antioxidant enzymes were unable to operate in cold stress. This indicates that the plants have a higher capacity for scavenging oxygen radicals in heat stress than in cold stress. The different responses of antioxidant enzymes may be one of the possible mechanisms of the differences in temperature sensitivities of the two plant species. [source]


    An illustrated gardener's guide to transgenic Arabidopsis field experiments

    NEW PHYTOLOGIST, Issue 2 2008
    Martin Frenkel
    Summary ,,Field studies with transgenic Arabidopsis lines have been performed over 8 yr, to better understand the influence that certain genes have on plant performance. Many (if not most) plant phenotypes cannot be observed under the near constant, low-stress conditions in growth chambers, making field experiments necessary. However, there are challenges in performing such experiments: permission must be obtained and regulations obeyed, the profound influence of uncontrollable biotic and abiotic factors has to be considered, and experimental design has to be strictly controlled. ,,The aim here is to provide inspiration and guidelines for researchers who are not used to setting up such experiments, allowing others to learn from our mistakes. ,, This is believed to be the first example of a ,manual' for field experiments with transgenic Arabidopsis plants. Many of the challenges encountered are common for all field experiments, and many researchers from ecological backgrounds are skilled in such methods. ,,There is huge potential in combining the detailed mechanistic understanding of molecular biologists with ecologists' expertise in examining plant performance under field conditions, and it is suggested that more interdisciplinary collaborations will open up new scientific avenues to aid analyses of the roles of genetic and physiological variation in natural systems. [source]


    Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader?

    NEW PHYTOLOGIST, Issue 3 2001
    Regina S. Redman
    Summary ,,Plant symbiotic fungi are generally thought to express a single lifestyle that might increase (mutualism), decrease (parasitism), or have no influence (commensalism) on host fitness. However, data are presented here demonstrating that plant pathogenic Colletotrichum species are able to asymptomatically colonize plants and express nonpathogenic lifestyles. ,,Experiments were conducted in growth chambers and plant colonization was assessed by emergence of fungi from surface sterilized plant tissues. Expression of symbiotic lifestyles was assessed by monitoring the ability of fungi to confer disease resistance, drought tolerance and growth enhancement. ,,Several pathogenic Colletotrichum species expressed either mutualistic or commensal lifestyles in plants not known to be hosts. Mutualists conferred disease resistance, drought tolerance, and/or growth enhancement to host plants. Lifestyle-altered mutants expressing nonpathogenic lifestyles had greater host ranges than the parental wildtype isolate. Successive colonization studies indicated that the ability of a symbiont to colonize a plant was dependent on previous colonization events and the lifestyles expressed by the initial colonizing fungus. ,,The results indicate that the outcome of symbiosis is controlled by the plant's physiology. [source]


    Red to far-red ratio correction in plant growth chambers , growth responses and influence of thermal load on garden pea

    PHYSIOLOGIA PLANTARUM, Issue 2 2007
    Ian G. Cummings
    Plant growth chambers are commonly used to minimize environmental variation but the light sources used vary considerably from natural light and from each other. Incandescent globes are often used to add more far-red light, with the aim of producing a more natural red to far-red ratio (R:FR), but also add to thermal load. High-intensity discharge lamps are often used to produce higher irradiances, more akin to natural light, but the thermal implications are rarely considered because air temperature is controlled. This paper examines the spectral properties and thermal implications of growth chamber light sources and takes a whole-plant physiology approach, by examining growth responses of a photoperiodic pea line (Pisum sativum L. cv. Torsdag) in the same growth chamber type under different light sources , in essence using plants to study the controlled environments rather than vice-versa. High R:FR delayed flowering and inhibited internode extension in pea. However, the addition of far-red-rich incandescent globes in the proportions provided in the growth chambers (400,500 W) did little to reduce R:FR, did not induce earlier flowering and actually further inhibited internode length. Leaflet size and yield were significantly reduced. While air temperature was maintained at 20°C in all experiments, radiant temperature was significantly higher under high irradiance and/or with incandescent added, and soil temperatures were elevated. Growth responses under these lights were similar to the effect caused by elevating the air temperature. An alternative method of controlling R:FR, without thermal load implications, using light-emitting diodes is described. [source]


    Senescence and hyperspectral reflectance of cotton leaves exposed to ultraviolet-B radiation and carbon dioxide

    PHYSIOLOGIA PLANTARUM, Issue 2 2004
    Vijaya Gopal Kakani
    The objectives of this study were to determine the effects of UV-B radiation and atmospheric carbon dioxide concentrations ([CO2]) on leaf senescence of cotton by measuring leaf photosynthesis and chlorophyll content and to identify changes in leaf hyperspectral reflectance occurring due to senescence and UV-B radiation. Plants were grown in controlled-environment growth chambers at two [CO2] (360 and 720 µmol mol,1) and three levels of UV-B radiation (0, 7.7 and 15.1 kJ m,2 day,1). Photosynthesis, chlorophyll, carotenoids and phenolic compounds along with leaf hyperspectral reflectance were measured on three leaves aged 12, 21 and 30 days in each of the treatments. No interaction was detected between [CO2] and UV-B for any of the measured parameters. Significant interactions were observed between UV-B and leaf age for photosynthesis and stomatal conductance. Elevated [CO2] enhanced leaf photosynthesis by 32%. On exposure to 0, 7.7 and 15.1 kJ of UV-B, the photosynthetic rates of 30-day-old leaves compared with 12-day-old leaves were reduced by 52, 76 and 86%, respectively. Chlorophyll pigments were not affected by leaf age at UV-B radiation of 0 and 7.7 kJ, but UV-B of 15.1 kJ reduced the chlorophylls by 20, 60 and 80% in 12, 21 and 30-day-old leaves, respectively. The hyperspectral reflectance between 726 and 1142 nm showed interaction for UV-B radiation and leaf age. In cotton, leaf photosynthesis can be used as an indicator of leaf senescence, as it is more sensitive than photosynthetic pigments on exposure to UV-B radiation. This study revealed that, cotton leaves senesced early on exposure to UV-B radiation as indicated by leaf photosynthesis, and leaf hyperspectral reflectance can be used to detect changes caused by UV-B and leaf ageing. [source]


    The influence of a spring habit gene, Vrn-D1, on heading time in wheat

    PLANT BREEDING, Issue 2 2001
    H. Kato
    Abstract The adaptability of wheat cultivars to environmental conditions is known to be associated with a vernalization requirement, that is, spring/winter habit. To clarify the genetic effect of the spring habit gene, Vrn-D1, on heading time in the field, recombinant inbred lines (RILs) with or without the Vrn-D1 gene were produced from F2 plants of the cross between ,Nanbukomugi' and ,Nishikazekomugi', non-carrier and carrier cultivars of this gene, respectively. Using growth chambers with a controlled temperature and photoperiod, three components of heading time, i.e. vernalization requirement, photoperiodic sensitivity and narrow-sense earliness (earliness per se), were evaluated in each RIL. RILs with the Vrn-D1 gene (E lines) showed greatly reduced vernalization requirements and slightly shorter narrow-sense earliness than RILs without Vrn-D1 (L lines), although no difference in photoperiodic sensitivity was observed between the two groups. RILs were planted at four different sites in Japan and examined for their heading time in the field. E lines headed significantly earlier than L lines at all locations, indicating that the earliness of E lines is stable in various environmental conditions. These results indicated that spring habit caused by Vrn-D1 gene, as well as narrow-sense earliness, was responsible for heading time in the field. [source]


    Atmospheric nitric oxide stimulates plant growth and improves the quality of spinach (Spinacia oleracea)

    ANNALS OF APPLIED BIOLOGY, Issue 1 2009
    C.W. Jin
    Abstract Nitric oxide (NO) is an endogenous signalling molecule implicated in a growing number of plant processes and has been recognised as a plant hormone. The present research employed spinach plant (Spinacia oleracea cv. Huangjia) and closed growth chambers to investigate the effects of gaseous NO application on vegetable production in greenhouses. Treatment of low concentration of NO gas (ambient atmosphere with 200 nL L,1 NO gas) significantly increased the shoot biomass of the soil-cultivated plants as compared with the control treatment (ambient atmosphere). In addition, the NO treatment also increased the photosynthetic rate of leaves, indicating that the enhancement of photosynthesis is an important reason leading to more biomass accumulation induced by NO gas. Furthermore, the NO treatment decreased nitrate concentration but increased the concentrations of soluble sugar, protein, antioxidants (vitamin C, glutathione and flavonoids), and ferric reducing-antioxidant power (FRAP) in shoots of the plants grown in soil, suggesting that the gaseous NO treatment can not only increase vegetable production but also improve vegetable quality. In addition, the effects of the combined application of NO and CO2 (NO 200 nL L,1 and CO2 800 ,L L,1) on shoot biomass was even greater than the effects of elevated CO2 (CO2 800 ,L L,1) or the NO treatment alone, implying that gaseous NO treatment can be used in CO2 -elevated greenhouses as an effective strategy in improving vegetable production. [source]