Home About us Contact | |||
Growing List (growing + list)
Selected AbstractsThe brain angiotensin IV/AT4 receptor system as a new target for the treatment of Alzheimer's diseaseDRUG DEVELOPMENT RESEARCH, Issue 7 2009John W. Wright Abstract The brain renin-angiotensin system (RAS) regulates several physiologies including blood pressure, body sodium and water balance, cyclicity of reproductive hormones and related sexual behaviors, and the release of pituitary gland hormones. These physiologies are under the control of the angiotensin II (AngII)/AT1 receptor subtype system. The AngII/AT2 receptor subtype system is expressed during fetal development and is less abundant in the adult. This system appears to oppose growth responses facilitated by activation of the AT1 receptor. There is a growing list of nontraditional physiologies mediated by the most recently discovered angiotensin IV (AngIV)/AT4 receptor subtype system that include the regulation of blood flow, modulation of exploratory behaviors, involvement in stress responses and seizure, and a role in learning and memory acquisition. There is evidence to support an inhibitory influence by AngII, and a facilitory role by AngIV, on neuronal firing rate, long-term potentiation, and associative and spatial learning and memory. These findings suggest an important role for the RAS, and the AT4 receptor in particular, in normal cognitive processing and provide the stimulus for developing drugs that penetrate the blood-brain barrier to interact with this brain receptor in the treatment of dysfunctional memory. Drug Dev Res 70: 472,480, 2009. © 2009 Wiley-Liss, Inc. [source] The 21st century renaissance of the basophil?EXPERIMENTAL DERMATOLOGY, Issue 11 2006Current insights into its role in allergic responses, innate immunity Abstract:, Basophils and mast cells express all the three subchains of the high-affinity immunoglobulin E (IgE) receptor Fc,RI and contain preformed histamine in the cytoplasmic granules. However, it is increasingly clear that these cells play distinct roles in allergic inflammatory disease. Despite their presence throughout much of the animal kingdom, the physiological function of basophils remains obscure. As rodent mast cells are more numerous than basophils, and generate an assortment of inflammatory cytokines, basophils have often been regarded as minor players in allergic inflammation. In humans, however, basophils are the prime early producers of interleukin (IL)-4 and IL-13, T helper (Th)2-type cytokines crucial for initiating and maintaining allergic responses. Basophils also express CD40 ligand which, in combination with IL-4 and IL-13, facilitates IgE class switching in B cells. They are the main cellular source for early IL-4 production, which is vital for the development of Th2 responses. The localization of basophils in various tissues affected by allergic inflammation has now been clearly demonstrated by using specific staining techniques and the new research is shedding light on their selective recruitment to the tissues. Finally, recent studies have shown that basophil activation is not restricted to antigen-specific IgE crosslinking, but can be caused in non-sensitized individuals by a growing list of parasitic antigens, lectins and viral superantigens, binding to non-specific IgE antibodies. This, together with novel IgE-independent routes of activation, imparts important new insights into the potential role of basophils in both adaptive and innate immunity. [source] Protein folding and disulfide bond formation in the eukaryotic cellFEBS JOURNAL, Issue 23 2009Denmark), Disulfide Bond Formation 2009 (Elsinore, Meeting report based on the presentations at the European Network Meeting on Protein Folding The endoplasmic reticulum (ER) plays a critical role as a compartment for protein folding in eukaryotic cells. Defects in protein folding contribute to a growing list of diseases, and advances in our understanding of the molecular details of protein folding are helping to provide more efficient ways of producing recombinant proteins for industrial and medicinal use. Moreover, research performed in recent years has shown the importance of the ER as a signalling compartment that contributes to overall cellular homeostasis. Hamlet's castle provided a stunning backdrop for the latest European network meeting to discuss this subject matter in Elsinore, Denmark, from 3 to 5 June 2009. Organized by researchers at the Department of Biology, University of Copenhagen, the meeting featured 20 talks by both established names and younger scientists, focusing on topics such as oxidative protein folding and maturation (in particular in the ER, but also in other compartments), cellular redox regulation, ER-associated degradation, and the unfolded protein response. Exciting new advances were presented, and the intimate setting with about 50 participants provided an excellent opportunity to discuss current key questions in the field. [source] Inducible gene expression with the Tet-on system in CD4+ T cells and thymocytes of miceGENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 7 2007Jisen Huai Abstract CD4+ T cells with their growing list of effector and regulatory subpopulations have vital functions within the immunohematopoietic system. We report here on the first mouse lines that allow temporally and quantitatively controlled expression of transgenes specifically in CD4+ thymocytes and T cells. These were constructed using the Tet-on system. The rtTA2S -M2 version of the reverse tetracycline-dependent transactivator was placed under control of all known CD4 regulatory elements. Reporter transgene expression in mice expressing these constructs is highly specific for CD4+ cells, is strictly dependent on the tetracycline derivative doxycycline, and can be regulated by up to five logs depending on the doxycycline concentration. Moreover, we demonstrate that these mice can be used for noninvasive in vivo imaging of a coexpressed luciferase reporter. These new mouse lines should be highly valuable for studying and manipulating numerous aspects of CD4+ T cell development, biology, and function. genesis 45:427,431, 2007. © 2007 Wiley-Liss, Inc. [source] Porcine induced pluripotent stem cells may bridge the gap between mouse and human iPSIUBMB LIFE, Issue 4 2010Miguel A. Esteban Abstract Recently, three independent laboratories reported the generation of induced pluripotent stem cells (iPSCs) from pig (Sus scrofa). This finding sums to the growing list of species (mouse, human, monkey, and rat, in this order) for which successful reprogramming using exogenous factors has been achieved, and multiple others are possibly forthcoming. But apart from demonstrating the universality of the network identified by Shinya Yamanaka, what makes the porcine model so special? On one side, pigs are an agricultural commodity and have an easy and affordable maintenance compared with nonhuman primates that normally need to be imported. On the other side, resemblance (for example, size of organs) of porcine and human physiology is striking and because pigs are a regular source of food the ethical concerns that still remain in monkeys are not applicable. Besides, the prolonged lifespan of pigs compared with other domestic species can allow exhaustive follow up of side effects after transplantation. Porcine iPSCs may thus fill the gap between the mouse model, which due to its ease is preferred for mechanistic studies, and the first clinical trials using iPSCs in humans. However, although these studies are relevant and have created significant interest they face analogous problems that we discuss herein together with potential new directions. © 2010 IUBMB IUBMB Life, 62(4): 277,282, 2010 [source] The adenine nucleotide translocase type 1 (ANT1): A new factor in mitochondrial diseaseIUBMB LIFE, Issue 9 2005J. Daniel Sharer Abstract Mitochondrial disorders of oxidative phosphorylation (OXPHOS) comprise a growing list of potentially lethal diseases caused by mutations in either mitochondrial (mtDNA) or nuclear DNA (nDNA). Two such conditions, autosomal dominant progressive external ophthalmoplegia (adPEO) and Senger's Syndrome, are associated with dysfunction of the heart and muscle-specific isoform of the adenine nucleotide translocase (ANT1), a nDNA gene product that facilitates transport of ATP and ADP across the inner mitochondrial membrane. AdPEO is a mtDNA deletion disorder broadly characterized by pathology involving the eyes, skeletal muscle, and central nervous system. In addition to ANT1, mutations in at least two other nuclear genes, twinkle and POLG, have been shown to cause mtDNA destabilization associated with adPEO. Senger's syndrome is an autosomal recessive condition characterized by congenital heart defects, abnormalities of skeletal muscle mitochondria, cataracts, and elevated circulatory levels of lactic acid. This syndrome is associated with severe depletion of ANT1, which may be the result of an as yet unidentified ANT1-specific transcriptional or translational processing error. ANT1 has also been associated with a third condition, autosomal dominant facioscapulohumeral muscular dystrophy (FSHD), an adult onset disorder characterized by variable muscle weakness in the face, feet, shoulders, and hips. FSHD patients possess specific DNA deletions on chromosome 4, which appear to cause derepression of several nearby genes, including ANT1. Early development of FSHD may involve mitochondrial dysfunction and increased oxidative stress, possibly associated with overexpression of ANT1. IUBMB Life, 57: 607-614, 2005 [source] Reactive Oxygen Species and Signal TransductionIUBMB LIFE, Issue 1 2001Toren Finkel Abstract Increasing evidence suggests a role for intracellular reactive oxygen species (ROS) as mediators of normal and pathological signal transduction pathways. In particular, a growing list of recent reports have demonstrated a rapid and significant increases in intracellular ROS following growth factor or cytokine stimulation. These ROS appear essential for a host of downstream signaling events. Biochemical characterization of this ligand-activated ROS production has revealed important information regarding the molecular composition of the cellular oxidases and the regulation of their activity by small GTPases. Work is proceeding on identifying strategies to identify how ROS might specifically regulate signaling pathways by altering the activity of direct target molecules. This review will focus on the progress in the rapid emerging area of oxidant or redox-dependent signal transduction and speculate how these insights might alter our view and treatment of diseases thought to be caused by oxidative stress. [source] Emerging functions of p21-activated kinases in human cancer cellsJOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2002Rakesh Kumar The p21 activated kinases (Paks), an evolutionarily conserved family of serine/threonine kinases, are important for a variety of cellular functions including cell morphogenesis, motility, survival, mitosis, and angiogenesis. Paks are widely expressed in numerous tissues and are activated by growth factors and extracellular signals through GTPase-dependent and -independent mechanisms. Overexpression of Paks in epithelial cancer cells has been shown to increase migration potential, increase anchorage independent growth, and cause abnormalities in mitosis. Dysregulation of Paks has been reported in several human tumors and neurodegenerative diseases. A growing list of novel Pak interacting proteins has opened up exciting avenues of investigation by which to understand the functions of Paks in tumorigenesis. In this review, we will summarize the current knowledge of the Paks family with respect to emerging cellular functions and possible contributions to cancer. © 2002 Wiley-Liss, Inc. [source] Sculpin hybrid zones: natural laboratories for the early stages of speciationMOLECULAR ECOLOGY, Issue 12 2009ANDREA SWEIGART Firmly rooted as we are in the genomic era, it can seem incredible that as recently as 1974, Lewontin declared, ,we know virtually nothing about the genetic changes that occur in species formation'. To the contrary, we now know the genetic architecture of phenotypic differences and reproductive isolation between species for many diverse groups of plants, animals, and fungi. In recent years, detailed genetic analyses have produced a small but growing list of genes that cause reproductive isolation, several of which appear to have diverged by natural selection. Yet, a full accounting of the speciation process requires that we understand the reproductive and ecological properties of natural populations as they begin to diverge genetically, as well as the dynamics of newly evolved barriers to gene flow. One promising approach to this problem is the study of natural hybrid zones, where gene exchange between divergent populations can produce recombinant genotypes in situ. In such individuals, genomic variation might be shaped by introgression at universally adaptive or neutral loci, even as regions associated with local adaptation or reproductive isolation remain divergent. In Nolte et al. (2009), the authors take advantage of two independent, recently formed hybrid zones between sculpin species to investigate genome-wide patterns of reproductive isolation. Using a recently developed genomic clines method, the authors identify marker loci that are associated with isolation, and those that show evidence for adaptive introgression. Remarkably, Nolte et al. (2009) find little similarity between the two hybrid zones in patterns of introgression, a fact that might reflect genetic variation within species or heterogeneous natural selection. In either case, their study system has the potential to provide insight into the early stages of speciation. [source] Revealing the hidden complexities of mtDNA inheritanceMOLECULAR ECOLOGY, Issue 23 2008DANIEL JAMES WHITE Abstract Mitochondrial DNA (mtDNA) is a pivotal tool in molecular ecology, evolutionary and population genetics. The power of mtDNA analyses derives from a relatively high mutation rate and the apparent simplicity of mitochondrial inheritance (maternal, without recombination), which has simplified modelling population history compared to the analysis of nuclear DNA. However, in biology things are seldom simple, and advances in DNA sequencing and polymorphism detection technology have documented a growing list of exceptions to the central tenets of mitochondrial inheritance, with paternal leakage, heteroplasmy and recombination now all documented in multiple systems. The presence of paternal leakage, recombination and heteroplasmy can have substantial impact on analyses based on mtDNA, affecting phylogenetic and population genetic analyses, estimates of the coalescent and the myriad of other parameters that are dependent on such estimates. Here, we review our understanding of mtDNA inheritance, discuss how recent findings mean that established ideas may need to be re-evaluated, and we assess the implications of these new-found complications for molecular ecologists who have relied for decades on the assumption of a simpler mode of inheritance. We show how it is possible to account for recombination and heteroplasmy in evolutionary and population analyses, but that accurate estimates of the frequencies of biparental inheritance and recombination are needed. We also suggest how nonclonal inheritance of mtDNA could be exploited, to increase the ways in which mtDNA can be used in analyses. [source] The MprF protein is required for lysinylation of phospholipids in listerial membranes and confers resistance to cationic antimicrobial peptides (CAMPs) on Listeria monocytogenesMOLECULAR MICROBIOLOGY, Issue 5 2006Kathrin Thedieck Summary Pathogenic bacteria have to cope with defence mechanisms mediated by adaptive and innate immunity of the host cells. Cationic antimicrobial peptides (CAMPs) represent one of the most effective components of the host innate immune response. Here we establish the function of Lmo1695, a member of the VirR-dependent virulence regulon, recently identified in Listeria monocytogenes. Lmo1695 encodes a membrane protein of 98 kDa with strong homology to the multiple peptide resistance factor (MprF) of Staphylococcus aureus. Like staphylococcal MprF, we found that Lmo1695 is involved in the synthesis of the membrane phospholipid lysylphosphatidylglycerol (L-PG). In addition, Lmo1695 is also essential for lysinylation of diphosphatidylglycerol (DPG), another phospholipid widely distributed in bacterial membranes. A ,lmo1695 mutant lacking the lysinylated phospholipids was particularly susceptible to CAMPs of human and bacterial origin. The mutant strain infected both epithelial cells and macrophages only poorly and was attenuated for virulence when tested in a mouse model of infection. Lmo1695 is a member of a growing list of survival factors which enable growth of L. monocytogenes in different environments. [source] Ciliary biology: Understanding the cellular and genetic basis of human ciliopathies,AMERICAN JOURNAL OF MEDICAL GENETICS, Issue 4 2009Magdalena Cardenas-Rodriguez Abstract Motile cilia have long been known to play a role in processes such as cell locomotion and fluid movement whereas the functions of primary cilia have remained obscure until recent years. To date, ciliary dysfunction has been shown to be causally linked to a number of clinical manifestations that characterize the group of human disorders known as ciliopathies. This classification reflects a common or shared cellular basis and implies that it is possible to associate a series of different human conditions with ciliary dysfunction, which allows gaining insight into the cellular defect in disorders of unknown etiology solely based on phenotypic observations. Furthermore, to date we know that the cilium participates in a number of biological processes ranging from chemo- and mechanosensation to the transduction of a growing list of paracrine signaling cascades that are critical for the development and maintenance of different tissues and organs. Consequently, the primary cilium has been identified as a key structure necessary to regulate and maintain cellular and tissue homeostasis and thus its study is providing significant information to understand the pathogenesis of the different phenotypes that characterize these human conditions. Finally, the similarities between different ciliopathies at the phenotypic level are proving to be due to their shared cellular defect and also their common genetic basis. To this end, recent studies are showing that mutations in a given ciliary gene often appear involved in the pathogenesis of more than one clinical entity, complicating their genetic dissection, and hindering our ability to generate accurate genotype,phenotype correlations. © 2009 Wiley-Liss, Inc. [source] Bile ducts as a source of pancreatic , cellsBIOESSAYS, Issue 9 2004Zoë D. Burke In recent years, there have been a number of well-documented examples demonstrating that one cell type can be converted to another. Two such examples are the appearance of ectopic pancreas in the liver and formation of hepatic tissue in the pancreas. The conversion of liver to pancreas raises the intriguing possibility of generating insulin-producing , cells for therapeutic transplantation into diabetics. There is now a striking addition to the growing list of pancreatic conversions: the formation of pancreatic tissue in the developing biliary system.1 BioEssays 26:932,937, 2004. © 2004 Wiley Periodicals, Inc. [source] Heritable genetic variation and potential for adaptive evolution in asexual aphids (Aphidoidea)BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2003ALEX C. C. WILSON Aphid life cycles can encompass cyclical parthenogenesis, obligate parthenogenesis, obligate parthenogenesis with male production and an intermediate ,bet-hedging' strategy where an aphid genotype will over-winter by continuing to reproduce by parthenogenesis and by investment in sexually produced eggs. In this paper, we focus on aphid lineages that reproduce entirely parthenogenetically (asexual aphids), in contrast to those that have any sexual forms in the annual cycle. Using modern molecular techniques, aphid biologists have made many empirical observations showing that asexual lineages are widespread both geographically and temporally. Indeed, we are collectively beginning to gather data on the evolution and persistence of these lineages through time. Here we review aphid karyology and parthenogenesis, both essential for interpretation of the molecular and ecological evolution of aphid asexual lineages. We describe the growing list of studies that have identified aphid genotypes that are both temporally and geographically widespread. We then collate examples of molecular and chromosomal evolution in asexual aphids and review the literature pertaining to phenotypic evolution and ecological diversification of asexual aphid lineages. In addition, we briefly discuss the potential of bacterial endosymbionts and epigenetic effects to influence the evolution of asexual aphid lineages. Lastly we provide a list of aphid taxa believed to be obligately asexual. This will be a useful resource for those seeking parthenogenetic animals as study systems. In conclusion, we present guidelines for the use of the term clone in aphid biology and stress the need for well-designed and well-executed studies examining the potential of asexual aphid lineages for adaptive evolution. © 2003 The Linnean Society of London. Biological Journal of the Linnean Society, 2003, 79, 115,135. [source] Fluorescence In Situ Hybridization (FISH) in Diagnostic and Investigative NeuropathologyBRAIN PATHOLOGY, Issue 1 2002Christine E. Fuller MD; Over the last decade, fluorescence in situ hybridization (FISH) has emerged as a powerful clinical and research tool for the assessment of target DNA dosages within interphase nuclei. Detectable alterations include aneusomies, deletions, gene amplifications, and translocations, with primary advantages to the pathologist including its basis in morphology, its applicability to archival, formalin-fixed paraffin-embedded (FFPE) material, and its similarities to immunohistochemistry. Recent technical advances such as improved hybridization protocols, markedly expanded probe availability resulting from the human genome sequencing initiative, and the advent of high-throughput assays such as gene chip and tissue microarrays have greatly enhanced the applicability of FISH. In our lab, we currently utilize only a limited battery of DNA probes for routine diagnostic purposes, with determination of chromosome 1p and 19q dosage in oligodendroglial neoplasms representing the most common application. However, research applications are numerous and will likely translate into a growing list of clinically useful markers in the near future. In this review, we highlight the advantages and disadvantages of FISH and familiarize the reader with current applications in diagnostic and investigative neuropathology. [source] A new player in a deadly game: influenza viruses and the PI3K/Akt signalling pathwayCELLULAR MICROBIOLOGY, Issue 6 2009Christina Ehrhardt Summary Upon influenza A virus infection of cells, a wide variety of antiviral and virus-supportive signalling pathways are induced. Phosphatidylinositol-3-kinase (PI3K) is a recent addition to the growing list of signalling mediators that are activated by these viruses. Several studies have addressed the role of PI3K and the downstream effector protein kinase Akt in influenza A virus-infected cells. PI3K/Akt signalling is activated by diverse mechanisms in a biphasic manner and is required for multiple functions during infection. While the kinase supports activation of the interferon regulatory factor-3 during antiviral interferon induction, it also exhibits virus supportive functions. In fact, PI3K not only regulates a very early step during viral entry but also results in suppression of premature apoptosis at later stages of infection. The latter function is dependent on the expression of the viral non-structural protein-1 (A/NS1). It has been shown that PI3K activation occurs by direct interaction of A/NS1 with the p85 regulatory subunit and interaction sites of A/NS1 and p85 have now been mapped in detail. Here, we summarize the current knowledge on influenza virus-induced PI3K signalling and how this pathway supports viral propagation. [source] Proteases in pathogenesis and plant defenceCELLULAR MICROBIOLOGY, Issue 10 2004Yiji Xia Summary Plant pathogens deliver a variety of virulence factors to host cells to suppress basal defence responses and create suitable environments for their propagation. Plants have in turn evolved disease resistance genes whose products detect the virulence factors as a signal of invasion and activate effective defence responses. Understanding how a virulence effector contributes to virulence on susceptible hosts but becomes an avirulence factor that triggers defence responses on resistance hosts has been a major focus in plant research. Recent studies have shown that a growing list of pathogen-encoded effectors functions as proteases that are secreted into plant cells to modify host proteins. In addition, several plant proteases have been found to function in activation of the defence mechanism. These findings reveal that post-translational modification of host proteins through proteolytic processing is a widely used mechanism in regulating the plant defence response. [source] |