Ground Vegetation (ground + vegetation)

Distribution by Scientific Domains


Selected Abstracts


Impact of reindeer grazing on ground-dwelling Carabidae and Curculionidae assemblages in Lapland

ECOGRAPHY, Issue 4 2003
Otso Suominen
Reindeer Rangifer tarandus L. grazing shapes forest vegetation, microclimate, and soil respiration in Lapland, especially due to grazing on lichens (Cladina). We studied how these changes and their magnitude affect ground-dwelling species of beetle families Carabidae (predators) and Curculionidae (herbivores), by using pitfall traps to collect invertebrates from pairs of grazed and ungrazed study plots over a wide range of site types. Changes in abundance, composition, richness and diversity of beetle assemblage were tested in relation to magnitude of the impacts on vegetation. The species compositions of Carabidae and Curculionidae differed between grazed and ungrazed plots in all sites. The relative difference between grazed and ungrazed plots in the number of individuals increased linearly with the impact of reindeer on vegetation cover. Carabid beetles, as a family, were more common in grazed plots in all sites. Curculionid beetles were more common in ungrazed plots in the birch dominated sites. This difference was mainly due to the species that feeds on deciduous leaves. In the pine dominated sites with high Cladina cover and more changes in ground vegetation, the number of curculionids feeding on conifers was higher in grazed plots. Species richness and diversity (H') of both families were higher in grazed plots. Of the total 27 species, 11 were found only in grazed plots, while not a single species was found only in ungrazed plots. The relative difference between plots in diversity and evennes (H'/H'max) had humped response to the difference in Cladina cover. The diversity values were greater in grazed plots at the intermediate levels of grazing impact, and only in sites with very low or extremely high Cladina cover difference was the diversity higher in ungrazed plots. The response of beetle diversity resembled the hypotheses suggested for the relationship between grazing and vegetation diversity: greatest positive effect at intermediate grazing intensity and negative effects at unproductive sites. [source]


Evaluating interactions between soil drainage and seedling performance in a restoration of Pinus sylvestris woodland, Scotland

GLOBAL ECOLOGY, Issue 2 2001
M. D. Crowell
Abstract 1,This paper evaluates the role of soil drainage in tree seedling performance at a site being restored from Calluna vulgaris moorland to Pinus sylvestris woodland, in Glen Affric, Scotland. The investigation focuses on the relationships between height of planted seedlings, type of ground vegetation and drainage conditions. 2,Slope, aspect, and soil depth were assessed as potential surrogates for direct measures of soil drainage, all of which were derived from digital terrain data. 3,Six variables related to drainage were recorded at 58 seedling locations and used in a factor analysis to understand links between soil moisture conditions, topographic variables and soil depth characteristics. 4,Factor analysis generated two factors that accounted for 70.5% of the variance in the correlation matrix of these variables: Factor 1 correlated strongly with variables that controlled peat accumulation and Factor 2 correlated strongly with topographic controls upon drainage patterns. 5,These two factors explained a significant amount of the variance in height of the Pinus seedlings planted at these locations. Significant differences were found between the factor scores associated with different types of ground vegetation, as well as between the seedling heights observed at locations with different vegetation types. 6,Multiple regressions were developed that indicated that slope, aspect, and soil depth were significant as independent variables in models where soil moisture content and aerobic soil depth were the dependent variables. [source]


Habitat selection and reproductive success of Ortolan Buntings Emberiza hortulana on farmland in central Sweden , the importance of habitat heterogeneity

IBIS, Issue 3 2008
ÅKE BERG
Many granivorous birds have shown severe population declines in Europe during recent decades. The aim of the present study was to analyse habitat preferences and reproductive success of one such species, the Ortolan Bunting Emberiza hortulana, in different farmland habitats in south-central Sweden. Four seemingly different land-use types were preferred: permanent set-asides, short rotation coppice, and grazed and unmanaged semi-natural pastures. Territories and random sites differed considerably in the proportion of these preferred land-use types; 39% of territories had > 70% preferred habitat (at the 100-m scale) compared to 5% of random sites. In contrast, 22% of territories and 65% of random sites had no preferred habitats. All the preferred habitats had heterogeneous ground vegetation characterized by patches with bare ground, or at least sparse ground vegetation, intermixed with patches with taller vegetation. Ortolan Buntings also preferred a heterogeneous habitat structure with occurrence of field islets, shrubby edges, barns and electric wires, which could act as song posts or suitable nest-sites, in 88% of territories. At a larger (1-km square) scale, territories occupied by pairs aggregated strongly in areas with high proportions of preferred habitats. The number of territories with single males correlated positively with the number of pairs, which suggests that conspecific attraction may influence territory distribution. No measured habitat factors were related to reproductive success. However, due to habitat preferences and the higher proportion of paired males in one habitat type (set-aside), the production of young (fledglings/ha) is expected to be higher in set-asides, as well as in short-rotation coppices and semi-natural pastures. Thus, these habitats are important for the conservation of the Ortolan Bunting. Large areas with habitat structures such as field islets are especially important because the Ortolan Bunting breeds in aggregations in these areas. [source]


Evaluation of extractable elements in artificial substratum made from sewage sludge: Approach to remediation of degraded land in the Arctic

LAND DEGRADATION AND DEVELOPMENT, Issue 2 2009
T. T. Gorbacheva
Abstract The Arctic (or subarctic) is characterized by a harsh climate and nutrient-poor soil; what makes it even harsher in Monchegorsk (67°51,N and 32°48,E) is that metal pollution originating from the Ni,Cu smelting industry has severely damaged the soil and ground vegetation, resulting in formation of an industrial desert (barren ground). A pilot-scale (4,ha) field test was carried out under such conditions to study how to apply municipal sewage sludge for rehabilitation of degraded land. After sewage sludge had been composted, an artificial substratum made from the compost was introduced to the remediation test field, and then willow, birch and grasses were planted on the substratum. The transformation of the artificial substratum was observed in the test field during 3 years. The portion of Cu in residual form was greater than that in other forms, it is hence considered that Cu has low bioavailability in the artificial substratum. Furthermore, the metal distributions statistically increased in fractions of humic acid (insoluble in water under acidic conditions), so the mobile amounts of Ni and Cu became small. The conclusion drawn from the field survey and analysis of extractable metals indicates that the lost vegetation is being restored even while pollution continues to be discharged from the smelter operation. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Effects of potassium carbonate as an alternative de-icer on ground vegetation and soil

ANNALS OF APPLIED BIOLOGY, Issue 3 2000
E ERHART
Summary The effects of the new de-icer potassium carbonate on the growth and species composition of a mixed sward and on the pH and electrical conductivity of the soil were examined in a four-year field trial and compared with sodium chloride. There were small positive effects of K2CO3 on the biomass yield of the sward at application rates up to 200 g m,2 yr,1, while effects were less negative than those of NaCl at annual application rates of 200 , 400 g m,2 yr,1. The species composition of the sward changed considerably with K2CO3 application, Agropyron repens becoming the dominant species. The pH was elevated slightly more by K2CO3 than by NaCl application. Electrical conductivity as an index of soil salinity was increased by both de-icers. K2CO3 was more adsorbed to soil colloids than NaCl, so that the rise in E.C. resulting from application of the former was restricted to the uppermost 10 cm of soil. [source]