Home About us Contact | |||
Ground Surface (ground + surface)
Selected AbstractsDating young geomorphic surfaces using age of colonizing Douglas fir in southwestern Washington and northwestern Oregon, USA,EARTH SURFACE PROCESSES AND LANDFORMS, Issue 6 2007Thomas C. Pierson Abstract Dating of dynamic, young (<500 years) geomorphic landforms, particularly volcanofluvial features, requires higher precision than is possible with radiocarbon dating. Minimum ages of recently created landforms have long been obtained from tree-ring ages of the oldest trees growing on new surfaces. But to estimate the year of landform creation requires that two time corrections be added to tree ages obtained from increment cores: (1) the time interval between stabilization of the new landform surface and germination of the sampled trees (germination lag time or GLT); and (2) the interval between seedling germination and growth to sampling height, if the trees are not cored at ground level. The sum of these two time intervals is the colonization time gap (CTG). Such time corrections have been needed for more precise dating of terraces and floodplains in lowland river valleys in the Cascade Range, where significant eruption-induced lateral shifting and vertical aggradation of channels can occur over years to decades, and where timing of such geomorphic changes can be critical to emergency planning. Earliest colonizing Douglas fir (Pseudotsuga menziesii) were sampled for tree-ring dating at eight sites on lowland (<750 m a.s.l.), recently formed surfaces of known age near three Cascade volcanoes , Mount Rainier, Mount St. Helens and Mount Hood , in southwestern Washington and northwestern Oregon. Increment cores or stem sections were taken at breast height and, where possible, at ground level from the largest, oldest-looking trees at each study site. At least ten trees were sampled at each site unless the total of early colonizers was less. Results indicate that a correction of four years should be used for GLT and 10 years for CTG if the single largest (and presumed oldest) Douglas fir growing on a surface of unknown age is sampled. This approach would have a potential error of up to 20 years. Error can be reduced by sampling the five largest Douglas fir instead of the single largest. A GLT correction of 5 years should be added to the mean ring-count age of the five largest trees growing on the surface being dated, if the trees are cored at ground level. This correction would have an approximate error of ±5 years. If the trees are cored at about 1·4 m above the ground surface (breast height), a CTG correction of 11 years should be added to the mean age of the five sampled trees (with an error of about ±7 years). Published in 2006 by John Wiley & Sons, Ltd. [source] The microstratigraphic record of abrupt climate changes in cave sediments of the Western MediterraneanGEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 5 2001Marie-Agnès Courty The purpose of this paper is to illustrate how calcareous sediments from Pleistocene and Holocene rockshelters and open caves of the Western Mediterranean can provide a stratigraphic record of abrupt climate change. The method proposed here is based on microstratigraphic examination of sedimentary sequences using microscopic techniques. The most important processes for characterizing the sensitivity of each cave to climate variables are: (1) the modes and rate of carbonate sediment production, (2) the nature and intensity of the pedogenic processes responsible for the synchronous alteration of carbonate materials (either those derived from the cave walls or those deposited on the ground surface), and (3) the supply of allogenic sediments, particularly by eolian activity. The cave sediment sequences presented record the marked coolings known as Dansgaard-Oeschger stadials and Heinrich events that occurred during the Pleistocene and the Holocene, as demonstrated by the high resolution records from ice and deep sea cores. At Abric Romanì in northeastern Spain, a series of sharp climatic deteriorations of increasing severity is shown to have occurred synchronously with the transition from the Middle to the Upper Paleolithic, with a period of seasonal frost and strong winds at ca. 37,000 yr B.P., tentatively correlated with Heinrich event 4. At Pigeon Cave, Taforalt (northern Morocco), the transition from the Aterian to Ibero-Maurusian/Epipalaeolithic cultures is dated to around 24,000,20,000 yr B.P. and is punctuated by a series of short cold pulses with evidence for seasonal freezing, soil erosion, and minimal evapotranspiration. In El Miron cave in north-central Spain, the exceptional nature of the Younger Dryas cooling produced a marked destabilization of the cave walls and roof. At El Miron, the stratigraphic evidence for sediment removal due to the rapid percolation of snow melt under a degraded soil cover allows us to reconstruct the nature of the negative excursion at ca. 8200 yr B.P. This example also illustrates how climate-controlled pedogenic processes can create a stratigraphic signature which has often been confused with a sedimentary hiatus. We conclude that cave sediments provide a valuable record of Pleistocene and Holocene climate changes. In appropriate contexts, these sequences allow us to examine the ecological stress generated by these unique global events at a local and regional level and improve our understanding of the complex anthropological processes that occurred at the same time. © 2001 John Wiley & Sons, Inc. [source] Ground Thermal Profiles from Mount Kenya, East AfricaGEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 2 2004Stefan W. Grab Abstract This paper presents and compares ground thermal regimes at 4200 and 4800 m a.s.l. on Mount Kenya's southern aspect. Temperatures were recorded using TinytalkÔ data loggers, installed at the ground surface and at depths of 1 cm, 5 cm, 10 cm and 50 cm. Temperatures were logged at 2-hour intervals over a period of 12 months (August 1998 to July 1999). The study is designed to demonstrate near-surface freeze conditions, which would have implications for contemporary periglacial landform production. Although ground freeze at 4200 m a.s.l. occurs during most nights (c. 70% at 1 cm depth), freeze penetration is restricted to the top 2 to 3 cm, such that no freeze was recorded at 5 cm depth. At 4800 m a.s.l., the diurnal frost frequency at the surface is 365 days (100%), whilst that at 10 cm depth is 165 days (45%). The paper demonstrates that a greater longevity of contemporary thin snow cover at 4800 m a.s.l. permits progressive sub-surface cooling with depth. However, the near-surface ground temperature profiles suggest that conditions are not conducive to permafrost development at the sites. [source] Reconstruction of the Water Table from Self-Potential Data: A Bayesian ApproachGROUND WATER, Issue 2 2009A. Jardani Ground water flow associated with pumping and injection tests generates self-potential signals that can be measured at the ground surface and used to estimate the pattern of ground water flow at depth. We propose an inversion of the self-potential signals that accounts for the heterogeneous nature of the aquifer and a relationship between the electrical resistivity and the streaming current coupling coefficient. We recast the inversion of the self-potential data into a Bayesian framework. Synthetic tests are performed showing the advantage in using self-potential signals in addition to in situ measurements of the potentiometric levels to reconstruct the shape of the water table. This methodology is applied to a new data set from a series of coordinated hydraulic tomography, self-potential, and electrical resistivity tomography experiments performed at the Boise Hydrogeophysical Research Site, Idaho. In particular, we examine one of the dipole hydraulic tests and its reciprocal to show the sensitivity of the self-potential signals to variations of the potentiometric levels under steady-state conditions. However, because of the high pumping rate, the response was also influenced by the Reynolds number, especially near the pumping well for a given test. Ground water flow in the inertial laminar flow regime is responsible for nonlinearity that is not yet accounted for in self-potential tomography. Numerical modeling addresses the sensitivity of the self-potential response to this problem. [source] Magnetic Resonance Sounding: New Method for Ground Water AssessmentGROUND WATER, Issue 2 2004M. Lubczynski The advantage of magnetic resonance sounding (MRS) as compared to other classical geophysical methods is in its water selective approach and reduced ambiguity in determination of subsurface free water content and hydraulic properties of the media due to the nuclear magnetic resonance (NMR) principle applied. Two case examples are used to explain how hydrogeological parameters are obtained from an MRS survey. The first case example in Delft (the Netherlands) is a multiaquifer system characterized by large signal to noise ratio (S/N = 73), with a 24 m thick, shallow sand aquifer, confined by a 15 m thick clay layer. For the shallow aquifer, a very good match between MRS and borehole data was obtained with regard to effective porosity nc,28% and specific drainage Sd,20%. The MRS interpretation at the level deeper than 39 m was disturbed by signal attenuation in the low resistivity (,10 ,m) media. The second case of Serowe (Botswana) shows a fractured sandstone aquifer where hydrogeological parameters are well defined at depth >74 m below ground surface despite quite a low S/N = 0.9 ratio, thanks to the negligible signal attenuation in the resistive environment. Finally, capabilities and limitations of the MRS technology are reviewed and discussed. MRS can contribute to subsurface hydrostratigraphy description, hydrogeological system parameterization, and improvement of well siting. The main limitations are survey dependence upon the value of the S/N ratio, signal attenuation in electrically conductive environments, nonuniformity of magnetic field, and some instrumental limitations. At locations sufficiently resistive to disregard the signal attenuation problems, the MRS S/N ratio determines how successfully MRS data can be acquired. Both signal and noise vary spatially; therefore, world scale maps providing guidelines on spatial variability of signal and noise are presented and their importance with respect to the MRS survey results is discussed. The noise varies also temporally; therefore, its diurnal and seasonal variability impact upon the MRS survey is covered as well. [source] Recharge and Preservation of Laurentide Glacial Melt Water in the Canadian ShieldGROUND WATER, Issue 5 2000Ian D. Clark Ground water inflows to drifts ranging from 700 to 1615 m below ground surface at the Con Mine, Yellowknife, Northwest Territories, Canada, were used to study deep hydrogeological flow regimes in Shield terrain. Salinity trends are due to mixing between low-TDS ground water and deep Ca(Na)-C1 brines (>290 g/L) likely derived from Devonian sea water. C1 - ,,18O relationships demonstrate that all inflows are a mixture of three distinct components: modern meteoric ground water (,18O ,,18.9 ± 0.1%o), brine (,18O ,,10%o), and an isotopically depleted water (,18O ,,28%o). The origin of this third endmember is attributed to glacial melt water injected into the subsurface during ablation of the Laurentide Ice Sheet at ca. 10 ka. A mechanism is proposed where high hydrostatic pressure in the ablation zone imposes strong downward gradients beneath the ice sheet margin. Numerical simulation with the SWIFT II finite-difference code recreates the observed salinity gradients within a modeled 50-year interval, corresponding with the rate of retreat of the ice sheet across the landscape at this time. The persistence of this melt water in the subsurface for some 10,000 years following retreat of the ice and decay of the steep hydraulic gradients highlights the importance of gradient, in addition to permeability, as a major control on ground water flow and transport in deep crystalline settings. [source] Chemical and Isotopic Constraints on the Origin of Wadi El-Tarfa Ground Water, Eastern Desert, EgyptGROUND WATER, Issue 5 2000M. Sultan We evaluated the use of the renewable ground water resources of the Eastern Desert to develop sustainable agriculture in Upper Egypt, an alternative that could alleviate some of Egypt's dependence on water from the Nile River. Ground water from shallow aquifers in the Eastern Desert of Egypt, near the intersection of Wadi El-Tarfa and the Nile River, was analyzed for chemical compositions, stable isotope ratios, and tritium activities. The ground water has a range in total dissolved solids of 300 to 5000 mg/L. Values of ,D and ,18O range from -10 to +34 %o and -2 to +5.2 %o, respectively, and defines a line having a slope of 5.7 that intersects the meteoric water line at about ,D = -15 %o on a plot of 8D versus ,18O. These findings indicate that the water might have been derived by a combination of evaporation of and salt addition to regional precipitation. Only one sample could have been derived directly by evaporation and transpiration of modern Nile River water. Salinization of the ground water could have occurred through dissolution of marine aerosol dry fallout, carbonate minerals, gypsum, and other trace evaporitic minerals at and near the ground surface. Tritium activities ranged from 0.04 to 12.9 TU (tritium unite), indicating that all but one of the samples were derived at least partly from precipitation that occurred within the last 45 years. These data indicate that Nubian Aquifer paleowater is not a significant component of the shallow aquifers of this portion of the Eastern Desert. The most likely source of this ground water is sporadic flash flood events yielding locally voluminous recharge that accumulates in coarse sediments and fractured rock beneath alluvial channels. The magnitude of this renewable ground water resource and its potential for supporting sustainable agriculture require further investigation. [source] A New Multilevel Ground Water Monitoring System Using Multichannel TubingGROUND WATER MONITORING & REMEDIATION, Issue 4 2002Murray D. Einarson A new multilevel ground water monitoring system has been developed that uses custom-extruded flexible 1.6-inch (4.1 cm) outside-diameter (O.D.) multichannel HOPE tubing (referred to as Continuous Multichannel Tubing or CMT) to monitor as many as seven discrete zones within a single borehole in either unconsolidated sediments or bedrock. Prior to inserting the tubing in the borehole, ports are created that allow ground water to enter six outer pie-shaped channels (nominal diameter = 0.5 inch [1.3 cm]) and a central hexagonal center channel (nominal diameter = 0.4 inch [1 cm]) at different depths, facilitating the measurement of depth-discrete piezometric heads and the collection of depth-discrete ground water samples. Sand packs and annular seals between the various monitored zones can be installed using conventional tremie methods. Alternatively, bentonite packers and prepacked sand packs have been developed that are attached to the tubing at the ground surface, facilitating precise positioning of annular seals and sand packs. Inflatable rubber packers for permanent or temporary installations in bedrock aquifers are currently undergoing site trials. Hydraulic heads are measured with conventional water-level meters or electronic pressure transducers to generate vertical profiles of hydraulic head. Ground water samples are collected using peristaltic pumps, small-diameter bailers, inertial lift pumps, or small-diameter canister samplers. For monitoring hydrophobic organic compounds, the CMT tubing is susceptible to both positive and negative biases caused by sorption, desorption, and diffusion. These biases can be minimized by: (1) purging the channels prior to sampling, (2) collecting samples from separate 0.25-inch (0.64 cm) O.D. Teflon sampling tubing inserted to the bottom of each sampling channel, or (3) collecting the samples downhole using sampling devices positioned next to the intake ports. More than 1000 CMT multilevel wells have been installed in North America and Europe to depths up to 260 feet (79 m) below ground surface. These wells have been installed in boreholes created in unconsolidated sediments and bedrock using a wide range of drilling equipment, including sonic, air rotary, diamond-bit coring, hollow-stem auger, and direct push. This paper presents a discussion of three field trials of the system, demonstrating its versatility and illustrating the type of depth-discrete data that can be collected with the system. [source] Water uptake and nutrient concentrations under a floodplain oak savanna during a non-flood period, lower Cedar River, Iowa,HYDROLOGICAL PROCESSES, Issue 21 2009Keith E. Schilling Abstract Floodplains during non-flood periods are less well documented than when flooding occurs, but non-flood periods offer opportunities to investigate vegetation controls on water and nutrient cycling. In this study, we characterized water uptake and nutrient concentration patterns from 2005 to 2007 under an oak savanna located on the floodplain of the Cedar River in Muscatine County, Iowa. The water table ranged from 0·5 to 2·5 m below ground surface and fluctuated in response to stream stage, plant water demand and rainfall inputs. Applying the White method to diurnal water table fluctuations, daily ET from groundwater averaged more than 3·5 mm/day in June and July and approximately 2 mm/day in May and August. Total annual ET averaged 404 mm for a growing season from mid-May to mid-October. Savanna groundwater concentrations of nitrate-N, ammonium-N, and phosphate-P were very low (mean <0·18, <0·14, <0·08 mg/l, respectively), whereas DOC concentrations were high (7·1 mg/l). Low concentrations of N and P were in contrast to high nutrient concentrations in the nearby Cedar River, where N and P averaged 7·5 mg/l and 0·13, respectively. In regions dominated by intensive agriculture, study results document valuable ecosystem services for native floodplain ecosystems in reducing watershed-scale nutrient losses and providing an oasis for biological complexity. Improved understanding of the environmental conditions of regionally significant habitats, including major controls on water table elevations and water quality, offers promise for better management aimed at preserving the ecology of these important habitats. Copyright © 2009 John Wiley & Sons, Ltd. [source] Long-term final void salinity prediction for a post-mining landscape in the Hunter Valley, New South Wales, AustraliaHYDROLOGICAL PROCESSES, Issue 2 2005Dr G. R. Hancock Abstract Opencast mining alters surface and subsurface hydrology of a landscape both during and post-mining. At mine closure, following opencast mining in mines with low overburden to coal ratios, a void is left in the final landform. This final void is the location of the active mine pit at closure. Voids are generally not infilled within the mines' lifetime, because of the prohibitive cost of earthwork operations, and they become post-mining water bodies or pit lakes. Water quality is a significant issue for pit lakes. Groundwater within coal seams and associated rocks can be saline, depending on the nature of the strata and groundwater circulation patterns. This groundwater may be preferentially drawn to and collected in the final void. Surface runoff to the void will not only collect salts from rainfall and atmospheric fallout, but also from the ground surface and the weathering of fresh rock. As the void water level rises, its evaporative surface area increases, concentrating salts that are held in solution. This paper presents a study of the long term, water quality trends in a post-mining final void in the Hunter Valley, New South Wales, Australia. This process is complex and occurs long term, and modelling offers the only method of evaluating water quality. Using available geochemical, climate and hydrogeological data as inputs into a mass-balance model, water quality in the final void was found to increase rapidly in salinity through time (2452 to 8909 mg l,1 over 500 years) as evaporation concentrates the salt in the void and regional groundwater containing high loads of salt continues to flow into the void. Copyright © 2004 John Wiley & Sons, Ltd. [source] Hillslope-swamp interactions and flow pathways in a hypermaritime rainforest, British ColumbiaHYDROLOGICAL PROCESSES, Issue 15 2003D. F. Fitzgerald Abstract The process of water delivery to a headwater stream in a hypermaritime rainforest was examined using a variety of physical techniques and tracing with dissolved organic carbon (DOC) and the stable isotopes of water. Headwater swamps, often the major discharge zones for water draining off steep forest slopes, strongly affect the physical and chemical character of streamflow in the region. The headwater swamp selected for detailed investigation was sustained by relatively constant groundwater input from the steep colluvial slopes that maintained the water table above the ground surface. During significant storm events the water table rose quickly and the swamp expanded to engulf marginal pools that developed rapidly on the adjacent ground surfaces. The corresponding release of surface water directly to the stream typically comprised up to 95% of total stream discharge. The proportion of groundwater seepage to the stream by matrix flow (<1%) and via macropore-fed springs (up to 73%) increased during the recession period, but could not be sustained over the longer term. In more protracted drying periods, deep groundwater contributions to the stream were routed first to the headwater swamp. Dissolved organic carbon (DOC) in the stream, measured daily or more frequently during storm events, was found to be directly proportional to discharge, owing to the domination of DOC-rich headwater-swamp water sources. Although ,18O and ,2H composition of rainwater, groundwater and stream flow were found to be similar, deuterium excess (d ,2H , 8,18O) of water components was often found to be distinct, and suggested short water residence times of roughly 12 days for one event. Overall, observations of a typical headwater swamp reveal that the groundwater regime is dominated by rapid infiltration and short, emergent flow paths. With a relatively short turnover time, potential disturbances to the system by harvesting of upslope areas can be expected to occur rapidly. Forest managers can mitigate some of the harmful effects of logging operations by respecting the integrity of headwater wetland systems. The nature and magnitude of such perturbations will require further study. Copyright © 2003 John Wiley & Sons, Ltd. [source] Characteristics of preferential flow and groundwater discharge to Shingobee Lake, Minnesota, USAHYDROLOGICAL PROCESSES, Issue 10 2002Hans F. Kishel Abstract Small-scale heterogeneities and large changes in hydraulic gradient over short distances can create preferential groundwater flow paths that discharge to lakes. A 170 m2 grid within an area of springs and seeps along the shore of Shingobee Lake, Minnesota, was intensively instrumented to characterize groundwater-lake interaction within underlying organic-rich soil and sandy glacial sediments. Seepage meters in the lake and piezometer nests, installed at depths of 0·5 and 1·0 m below the ground surface and lakebed, were used to estimate groundwater flow. Statistical analysis of hydraulic conductivity estimated from slug tests indicated a range from 21 to 4·8 × 10,3 m day,1 and small spatial correlation. Although hydraulic gradients are overall upward and toward the lake, surface water that flows onto an area about 2 m onshore results in downward flow and localized recharge. Most flow occurred within 3 m of the shore through more permeable pathways. Seepage meter and Darcy law estimates of groundwater discharge agreed well within error limits. In the small area examined, discharge decreases irregularly with distance into the lake, indicating that sediment heterogeneity plays an important role in the distribution of groundwater discharge. Temperature gradients showed some relationship to discharge, but neither temperature profiles nor specific electrical conductance could provide a more convenient method to map groundwater,lake interaction. These results suggest that site-specific data may be needed to evaluate local water budget and to protect the water quality and quantity of discharge-dominated lakes. Copyright © 2002 John Wiley & Sons, Ltd. [source] Wave propagation velocity under a vertically vibrated surface foundationINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 9 2009Jaehun Ahn Abstract The ultimate objective of the research conducted by the authors is to explore the feasibility of determining reliable in situ values of soil modulus as a function of strain. In field experiments, an excitation is applied on the ground surface using large-scale shakers, and the response of the soil deposit is recorded through receivers embedded in the soil. The focus of this paper is on the simulation and observation of signals that would be recorded at the receiver locations under idealized conditions to provide guidelines on the interpretation of the field measurements. Discrete models are used to reproduce one-dimensional and three-dimensional geometries. When the first times of arrival are detected by receivers under the vertical impulse, they coincide with the arrival of the P wave; therefore related to the constrained modulus of the material. If one considers, on the other hand, phase differences between the motions at two receivers, the picture is far more complicated and one would obtain propagation velocities, function of frequency and measuring location, which do not correspond to either the constrained modulus or Young's modulus. It is necessary then to conduct more rigorous and complicated analyses in order to interpret the data. This paper discusses and illustrates these points. Copyright © 2008 John Wiley & Sons, Ltd. [source] Vertical stress distributions around batter piles driven in cross-anisotropic mediaINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 8 2009Cheng-Der Wang Abstract This work presents analytical solutions to compute the vertical stresses for a cross-anisotropic half-space due to various loading types by batter piles. The loading types are an embedded point load for an end-bearing pile, uniform skin friction, and linear variation of skin friction for a friction pile. The cross-anisotropic planes are parallel to the horizontal ground surface. The proposed solutions can be obtained by utilizing Wang and Liao's solutions for a horizontal and vertical point load acting in the interior of a cross-anisotropic medium. The derived cross-anisotropic solutions using a limiting approach are in perfect agreement with the isotropic solutions of Ramiah and Chickanagappa with the consideration of pile inclination. Additionally, the present solutions are identical to the cross-anisotropic solutions by Wang for the batter angle equals to 0. The influential factors in yielded solutions include the type and degree of geomaterial anisotropy, pile inclination, and distinct loading types. An example is illustrated to clarify the effect of aforementioned factors on the vertical stresses. The parametric results reveal that the stresses considering the geomaterial anisotropy and pile batter differ from those of previous isotropic and cross-anisotropic solutions. Hence, it is imperative to take the pile inclination into account when piles are required to transmit both the axial and lateral loads in the cross-anisotropic media. Copyright © 2008 John Wiley & Sons, Ltd. [source] Displacement and stress distributions under a uniform inclined rectangular load on a cross-anisotropic geomaterialINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 6 2009Cheng-Der Wang Abstract In practical engineering, an applied rectangular area load is not often horizontally or vertically distributed but is frequently inclined at a certain angle with respect to the horizontal and vertical axes. Thus, the solutions of displacements and stresses due to such a load are essential to the design of foundations. This article yields the analytical solutions of displacements and stresses subjected to a uniform rectangular load that inclines with respect to the horizontal and vertical axes, resting on the surface of a cross-anisotropic geomaterial. The planes of cross-anisotropy are assumed to be parallel to the horizontal ground surface. The procedures to derive the solutions can be integrated the modified point load solutions, which are represented by several displacement and stresses elementary functions. Then, upon integrations, the displacement and stress integral functions resulting from a uniform inclined rectangular load for (1) the displacements at any depth, (2) the surface displacements, (3) the average displacements in a given layer, (4) the stresses at any depth, and (5) the average stresses in a given layer are yielded. The proposed solutions are clear and concise, and they can be employed to construct a series of calculation charts. In addition, the present solutions clarify the load inclinations, the dimensions of a loaded rectangle, and the analyzed depths, and the type and degree of geomaterial anisotropy profoundly affect the displacements and stresses in a cross-anisotropic medium. Parametric results show that the load inclination factor should be considered when an inclined rectangular load uniformly distributed on the cross-anisotropic material. Copyright © 2008 John Wiley & Sons, Ltd. [source] Analysis of soil,pile,structure interaction in a two-layer ground during earthquakes considering liquefactionINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 8 2008C. W. Lu Abstract This study is conducted with a numerical method to investigate the seismic behaviour among certain soils, single piles, and a structure. A series of numerical simulations of the seismic behaviour of a single-pile foundation constructed in a two-layer ground is carried out. Various sandy soils, namely, dense sand, medium dense sand, reclaimed soil, and loose sand, are employed for the upper layer, while one type of clayey soil is used for the lower layer. The results reveal that when a structure is built in a non-liquefiable ground, an amplification of the seismic waves is seen on the ground surface and in the upper structure, and large bending moments are generated at the pile heads. When a structure is built in a liquefiable ground, a de-amplification of the seismic waves is seen on the ground surface and in the upper structure, and large bending moments are generated firstly at the pile heads and then in the lower segment at the boundary between the soil layers when liquefaction takes place. Copyright © 2007 John Wiley & Sons, Ltd. [source] Numerical modelling of regional faults in land subsidence prediction above gas/oil reservoirsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 6 2008Massimiliano Ferronato Abstract The stress variation induced by gas/oil production may activate pre-existing regional faults. This may enhance the expected land subsidence due to the generation of mechanically weak points close to the producing field. A class of elasto-plastic interface elements (IE), specifically designed to address the mechanical behaviour of faults over a regional scale, is integrated into a finite element (FE) geomechanical model and used to investigate the role exerted by active faults in anthropogenic land subsidence. The importance of regional faults depends on a variety of factors including depth of the depleted reservoir, fault number, orientation and size, geomechanical properties of porous medium, pore pressure drawdown induced by fluid production, etc. With the aid of some representative examples, a useful indication is provided as to where and how fault activation may influence both magnitude and extent of the land subsidence bowl above producing gas/oil reservoirs, pointing to a generally limited impact on the ground surface. The simulation of a real faulted gas reservoir in a complex 3-D setting shows that the proposed IE can be simply and efficiently incorporated into a FE geomechanical model, thus improving the quality of the stress and displacement prediction. Copyright © 2007 John Wiley & Sons, Ltd. [source] Surface displacements due to batter piles driven in cross-anisotropic mediaINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 2 2008Cheng-Der Wang Abstract This article derives the closed-form solutions for estimating the vertical surface displacements of cross-anisotropic media due to various loading types of batter piles. The loading types include an embedded point load for an end-bearing pile, uniform skin friction, and linear variation of skin friction for a friction pile. The planes of cross-anisotropy are assumed to be parallel to the horizontal ground surface. The proposed solutions are never mentioned in literature and can be developed from Wang and Liao's solutions for a horizontal and vertical point load embedded in the cross-anisotropic half-space. The present solutions are identical with Wang's solutions when batter angle equals to 0°. In addition, the solutions indicate that the surface displacements in cross-anisotropic media are influenced by the type and degree of material anisotropy, angle of inclination, and loading types. An illustrative example is given at the end of this article to investigate the effect of the type and degree of soil anisotropy (E/E,, G,/E,, and ,/,,), pile inclination (,), and different loading types (a point load, a uniform skin friction, and a linear variation of skin friction) on vertical surface displacements. Results show that the displacements accounted for pile batter are quite different from those estimated from plumb piles, both driven in cross-anisotropic media. Copyright © 2007 John Wiley & Sons, Ltd. [source] Lateral force and centroid location caused by horizontal and vertical surcharge strip loads on a cross-anisotropic backfillINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 13 2007Cheng-Der Wang Abstract This work presents analytical solutions for determining lateral force (force per unit length) and centroid location caused by horizontal and vertical surcharge surface loads acting on a cross-anisotropic backfill. The surcharge loading types are point load, line load, uniform strip load, upward linear-varying strip load, upward nonlinear-varying strip load, downward linear-varying strip load, and downward nonlinear-varying strip load. The planes of cross-anisotropy are assumed parallel to the backfill ground surface. The proposed solutions, derived by integrating the lateral stress solutions (Int. J. Numer. Anal. Meth. Geomech. 2005; 29:1341,1361), do not exist in literature. Clearly, the type and degree of material anisotropy, loading distance from the retaining wall, and loading types markedly impact the proposed solutions. Two examples are utilized to illustrate the type and degree of soil anisotropy, and the loading types on the lateral force and centroid location in the isotropic/cross-anisotropic backfills generated by the horizontal and vertical uniform, upward linear-varying and upward nonlinear-varying strip loads. The parametric study results demonstrate that the lateral force and centroid location accounting for soil anisotropy, loading distance from the retaining wall, dimension of the loading strip, and loading directions and types differ significantly from those estimated using existing isotropic solutions. The derived solutions can be added to other lateral pressures, such as earth pressure or water pressure, required for stability and structural analysis of a retaining wall. Additionally, they can simulate realistically actual surcharge loading problems in geotechnical engineering when backfill materials are cross-anisotropic. Copyright © 2007 John Wiley & Sons, Ltd. [source] Frost heave modelling using porosity rate functionINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 8 2006Radoslaw L. Michalowski Abstract Frost-susceptible soils are characterized by their sensitivity to freezing that is manifested in heaving of the ground surface. While significant contributions to explaining the nature of frost heave in soils were published in late 1920s, modelling efforts did not start until decades later. Several models describing the heaving process have been developed in the past, but none of them has been generally accepted as a tool in engineering applications. The approach explored in this paper is based on the concept of the porosity rate function dependent on two primary material parameters: the maximum rate, and the temperature at which the maximum rate occurs. The porosity rate is indicative of ice growth, and this growth is also dependent on the temperature gradient and the stress state in the freezing soil. The advantage of this approach over earlier models stems from a formulation consistent with continuum mechanics that makes it possible to generalize the model to arbitrary three-dimensional processes, and use the standard numerical techniques in solving boundary value problems. The physical premise for the model is discussed first, and the development of the constitutive model is outlined. The model is implemented in a 2-D finite element code, and the porosity rate function is calibrated and validated. Effectiveness of the model is then illustrated in an example of freezing of a vertical cut in frost-susceptible soil. Copyright © 2006 John Wiley & Sons, Ltd. [source] A cyclic viscoelastic,viscoplastic constitutive model for clay and liquefaction analysis of multi-layered groundINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 2 2004Fusao Oka Abstract In order to estimate viscous effect of clay in the wide range of low to high level of strain, a cyclic viscoelastic,viscoplastic constitutive model for clay is proposed. First, we confirm the performance of the proposed model by simulating the cyclic undrained triaxial tests to determine the cyclic strength and deformation characteristics of a natural marine clay. Then, the proposed model is incorporated into an effective stress based liquefaction analysis method to estimate the effect of an intermediate clay layer on the behaviour of liquefiable sand layers. The seismic response against foreshocks, main shock as well as aftershocks of 1995 Hyogoken Nambu Earthquake is analysed in the present study. The difference of shear strength characteristics of the alluvial clay layer is one of the reasons why Port Island has a higher liquefaction potential than that of Rokko Island. The proposed model gives a good description of the damping characteristics of clay layer during large earthquakes. Acceleration responses in both clay layer and liquefiable sand layer just above it are damped due to viscous effect of clay. In the case of main shock and the following aftershocks that occurred within less than 9 days after main event, acceleration responses near ground surface are de-amplified due to the developed excess pore water pressure, while responses near ground surface are amplified before and long after the main event. Using the viscoelastic,viscoplastic model for clay layer, time history of acceleration response in upper liquefiable sand layer can be well calculated, in particular in the range of microtremor process after the main seismic motion. Copyright © 2004 John Wiley & Sons, Ltd. [source] Long-term canopy dynamics in a large area of temperate old-growth beech (Fagus crenata) forest: analysis by aerial photographs and digital elevation modelsJOURNAL OF ECOLOGY, Issue 6 2004YUKO HENBO Summary 1Long-term canopy dynamics in a large area of temperate old-growth beech forest in the Daisen Forest Reserve, south-western Japan (11.56 ha studied over 43 years), were investigated using digital elevation models (DEMs) of the canopy surface, constructed from aerial photographs taken in the growing season (i.e. with foliage) in 1958, 1978, 1992 and 2001. A ground surface DEM at the same resolution (a 2.5 × 2.5 m grid) was constructed using aerial photographs taken when foliage was absent (winter 2002). Canopy height data were obtained by calculating differences in elevation between the canopy and the ground surface, and a canopy height profile was constructed. 2Topographic data for a 4-ha plot, located within the 11.56-ha area, were obtained via a ground survey and used to validate the ground surface DEM derived from aerial photographs. 3Canopy height class distributions changed significantly over the 43 years. The total number of gaps, defined as areas where canopy height was , 15 m, decreased but total gap area increased over time. Total gap area in 2001 was twice that of 1958. The density of gaps decreased as gap size increased. 4Gap formation rates increased from 0.47% year,1 (1958,78) to 1.30% year,1 (1992,2001), with a mean of 0.77% year,1, and substantially exceeded closure rates, which fluctuated from 0.28% year,1 (1958,78) to 0.54% year,1 (1978,92), with a mean of 0.39% year,1. Gaps generally expanded and became connected to each other. 5Temporal variation in gap formation and closure might be correlated with the frequency and severity of typhoon disturbances but, if the observed trends continue, this old-growth beech stand may become an open stand. The long-term dynamics of this forest type appear to be far from equilibrium. [source] Reconstructing the Sequence of Events Surrounding Body Disposition Based on Color Staining of Bone,JOURNAL OF FORENSIC SCIENCES, Issue 5 2009Meaghan A. Huculak H.B.Sc. Abstract:, Literature regarding bone color is limited to determining location of primary and secondary dispositions. This research is the first to use bone color to interpret the sequence of events surrounding body disposition. Two scenarios were compared,bones buried and then exposed on the ground surface and bones exposed then buried. Forty juvenile pig humeri with minimal tissue were used in each scenario with an additional 20 controls to determine if decomposing tissue affects bone color. Munsell Color Charts were used to record bone color of surface and 2.5 cm cross-sections. Results reveal five main surface colors attributed to soil, sun, hemolysis, decomposition, and fungi. Fungi on buried bones suggests prior surface exposure. Cross-sections of strictly buried bones are identical to buried then exposed bone, stressing the importance of bone surface analysis. Cross-sectioning may help verify remains have been exposed then buried. Decomposition of excess tissue creates minimal color staining. [source] Upland Controls on the Hydrological Functioning of Riparian Zones in Glacial Till Valleys of the Midwest,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2007P. Vidon Abstract:, Identifying relationships between landscape hydrogeological setting, riparian hydrological functioning and riparian zone sensitivity to climate and water quality changes is critical in order to best use riparian zones as best management practices in the future. In this study, we investigate water table dynamics, water flow path and the relative importance of precipitation, deep ground water (DG) and seep water as sources of water to a riparian zone in a deeply incised glacial till valley of the Midwest. Data indicate that water table fluctuations are strongly influenced by soil texture and to a lesser extent by upland sediment stratigraphy producing seeps near the slope bottom. The occurrence of till in the upland and at 1.7-2 m in the riparian zone contributes to maintaining flow parallel to the ground surface at this site. Lateral ground-water fluxes at this site with a steep topography in the upland (16%) and loam soil near the slope bottom are small (<10 l/d/m stream length) and intermittent. A shift in flow path from a lateral direction to a down valley direction is observed in the summer despite the steep concave topography and the occurrence of seeps at the slope bottom. Principal component and discriminant analysis indicate that riparian water is most similar to seep water throughout the year and that DG originating from imbedded sand and gravel layers in the lower till unit is not a major source of water to riparian zones in this setting. Water quality data and the dependence of the riparian zone for recharge on seep water suggest that sites in this setting may be highly sensitive to changes in precipitation and water quality in the upland in the future. A conceptual framework describing the hydrological functioning of riparian zones on this setting is presented to generalize the finding of this study. [source] A rain water infiltration model with unilateral boundary condition: qualitative analysis and numerical simulationsMATHEMATICAL METHODS IN THE APPLIED SCIENCES, Issue 17 2006I. Borsi Abstract We present a rigorous mathematical treatment of a model describing rain water infiltration through the vadose zone in case of runoff of the excess water. The main feature of the mathematical problem emerging from the model lies on the boundary condition on the ground surface which is in the form of a unilateral constraint. Existence and uniqueness of a weak solution is proved under general assumptions. We present also the results of a numerical study comparing the proposed model with other models which approach in a different way the rain water infiltration problem. Copyright © 2006 John Wiley & Sons, Ltd. [source] Frost heave and thaw consolidation of ploughing boulders in a mid-alpine environment, Finse, Southern NorwayPERMAFROST AND PERIGLACIAL PROCESSES, Issue 2 2001Ivar Berthling Abstract The frost heave and thaw consolidation of five large ploughing boulders were studied at Finse (UTM32VMN185198), southern Norway, by optical levelling from a bedrock benchmark. The boulders heave 3,7 cm, mainly during the early winter. Thaw consolidation starts while the boulders are still completely snow-covered in spring, but accelerates considerably when a trench in the snow is melted down to the ground surface around the boulders. During four years of measurements, the vertical position of the boulders lowered by a total mean of 5 mm. Boulder heave was well correlated to the square root of the freezing index, although differences in snow cover between subsequent years had marked effects on the heave of some of the boulders. The overburden pressure of the boulders also influenced total heave. An equation was obtained, relating boulder heave to the square root of the freezing index and the average height of the boulder. Copyright © 2001 John Wiley & Sons, Ltd. RÉSUMÉ Le soulèvement par le gel et la retombée au dégel de 5 grands blocs labourant ont été observés à Finse (UTM MN185198), au sud de la Norvège, par nivellement optique à partir d'un repère fixé sur la roche en place. Le soulèvement est de 3-7 cm et se réalise principalement pendant le début de l'hiver. L'affaissement au dégel débute au printemps alors que les blocs sont encore complètement couverts de neige, mais s'accélère beaucoup quand la neige a fondu autour des blocs. Pendant les quatre années de mesures, les blocs se sont affaissés au dégel d'une moyenne totale de 5 mm. Le soulèvement des blocs est bien corrélé avec la racine carrée de l'index de gel, quoique des différences dans la couverture de neige suivant les années ont des effets marqués sur le soulèvement de quelques blocs. La pression des blocs influence aussi le soulèvement total. Une équation a été obtenue mettant en relation le soulèvement des blocs avec la racine carrée de l'index de gel et la hauteur moyenne des blocs. Copyright © 2001 John Wiley & Sons, Ltd. [source] Enhanced aerobic bioremediation of a gasohol release in a fractured bedrock aquiferREMEDIATION, Issue 2 2010Mark S. Heaston In January 2005, a gasoline tanker carrying approximately 8,500 gallons of gasohol (gasoline containing 10 percent ethanol) overturned and caught fire in the front yard of a residence. Emergency response crews responded to the accident, extinguished the fire, and recovered residual gasoline on the ground surface. Soil impacted by the release was then removed and disposed of off-site and free-phase gasohol was recovered using a combination of vacuum recovery, pumping, and bailing to the extent practicable. Following free product recovery efforts, a feasibility evaluation was completed to select a technology to address the remaining dissolved-phase contaminants that resulted in biosparging pilot testing and, ultimately, the installation of a full-scale biosparging system. The full-scale system has been operating for approximately 21 months, and contaminant concentrations within the heart of the plume have decreased dramatically over a short period of time,in most cases, to below applicable cleanup standards. Despite the complex hydrogeologic conditions and significant initial concentrations, biosparging has proven to be an effective technology to remediate this gasohol release, and it is anticipated that drinking-water standards can be achieved following two to three years of biosparging (i.e., an additional 3 to 15 months of operations). © 2010 Wiley Periodicals, Inc. [source] Evaluation of a vertical frozen soil barrier at oak ridge national laboratoryREMEDIATION, Issue 3 2000Stanley W. Lynn Arctic Foundations, Inc. (AFI), of Anchorage, Alaska, has developed a freeze barrier system designed to hydraulically isolate a contaminant source area. The system can be used for long-term or temporary containment of groundwater until appropriate remediation techniques can be applied. The technology was evaluated under the United States Environmental Protection Agency's (EPA's) Superfund Innovative Technology Evaluation (SITE) program at the United States Department of Energy's (DOE's) Oak Ridge National Laboratory (ORNL) facility in Oak Ridge, Tennessee. For the demonstration, an array of freeze pipes called "thermoprobes" was installed to a depth of 30 feet below ground surface around a former waste collection pond and keyed into bedrock. The system was used to establish an impermeable frozen soil barrier to hydraulically isolate the pond. Demonstration personnel collected independent data to evaluate the technology's performance. A variety of evaluation tools were used,including a groundwater dye tracing investigation, groundwater elevation measurements, and subsurface soil temperature data,to determine the effectiveness of the freeze barrier system in preventing horizontal groundwater flow beyond the limits of the frozen soil barrier. Data collected during the demonstration provided evidence that the frozen soil barrier was effective in hydraulically isolating the pond. [source] Multi-offset ground penetrating radar methods to image buried foundations of a medieval town wall, Great Yarmouth, UKARCHAEOLOGICAL PROSPECTION, Issue 2 2010Adam D. Booth Abstract In conventional common-offset (CO) usage, ground-penetrating radar (GPR) methods may be problematic where a target is hosted within a structurally complex subsurface, or where coherent noise energy obscures the response to that target. This often occurs when imaging archaeology in urban environments, where reflected and diffracted air-wave energy can be pervasive in the presence of cars, walls and other nearby features. To overcome such issues we show a multi-offset (MO) GPR approach to urban surveying. Multi-offset velocity analysis is used as a filter by which ground-propagating signal energy is separated from airborne arrivals, with the latter suppressed on application of normal moveout corrections and stacking. Pre-stack migration is applied and yields considerable improvement to target resolution compared with post-stack routines. The MO-derived model of GPR velocity can also show the subsurface distribution of archaeological layering. Methods are demonstrated for a 25-fold MO GPR profile acquired, using unshielded antennas of 200 MHz centre-frequency, over foundations of the medieval town wall of Great Yarmouth, UK. The buried foundations represent a vertical discontinuity in the ground, which truncates both natural geological and archaeologically prospective layers. In addition to this complex geometry, which itself hinders GPR imaging, coherent air-wave noise is problematic because there are numerous above-surface features (e.g. parked cars, above-surface walls) in the immediate vicinity of the profile. The improvement offered by MO techniques is benchmarked against a conventional CO routine and compared with co-located borehole records for a comprehensive subsurface interpretation. Target foundations appear ca. 1.5,m beneath the ground surface, and GPR data support artefactual evidence of the construction of a sixteenth century rampart on their interior side. Despite the increased survey effort, we recommend MO methods at any location where CO data are dominated with coherent noise energy, and where complex subsurface geometries degrade the output from standard migration algorithms. Copyright © 2010 John Wiley & Sons, Ltd. [source] Rapid seismic reflection imaging at the Clovis period Gault site in central TexasARCHAEOLOGICAL PROSPECTION, Issue 4 2007John A. Hildebrand Abstract Using a modified seismic reflection imaging system with rapid translation of receivers, stratigraphic profiles were collected at the Gault site in central Texas. For rapid data collection, spikeless geophone receivers were placed in sand-filled bags at tight spacing, and these receivers were rapidly pulled along the ground surface between shots. Shots were produced by a small hammer strike to a vertical pipe at 20-cm intervals. High quality ultrashallow seismic reflection profiles were collected at a rate of 25,m,h,1, significantly faster than what is possible with conventional seismic reflection imaging using individually planted geophones. Ground-penetrating radar was attempted, but abandoned owing to the poor penetration of the radar signals in the clay soils present at the Gault site. Electromagnetic induction grids were collected surrounding each seismic reflection profile, and provided information on near-surface ground water. Seismic reflection images of Gault site stratigraphy provided greater depth penetration than accessible from backhoe trenching and coring, and helped to better outline the site geological context. Seismic images reveal coherent reflections at shallow depths (0,2.5,m), and extensive scattering at deeper levels (2.5,8,m), underlain by reflection-free zones. These data are interpreted as clay and gravel layers overlaying palaeostream channels carved into the limestone bedrock. Where comparative data were available, the geophysical findings were corroborated by observations of site stratigraphy in archaeological excavation units, backhoe trenches and cores. Seismic reflection studies at the Gault site revealed a palaeochannel filled with pre-Clovis age sediments. Pre-Clovis age sediments are not known to occur at other locations within the Gault site. They provide a unique opportunity to test for cultural remains of great antiquity. Copyright © 2007 John Wiley & Sons, Ltd. [source] |