Home About us Contact | |||
Greenschist Facies Conditions (greenschist + facy_condition)
Selected AbstractsFormation of clinopyroxene + spinel and amphibole + spinel symplectites in coronitic gabbros from the Sierra de San Luis (Argentina): a key to post-magmatic evolutionJOURNAL OF METAMORPHIC GEOLOGY, Issue 7 2008G. CRUCIANI Abstract The El Arenal metagabbros preserve coronitic shells of orthopyroxene ± Fe-oxide around olivine, as well as three different types of symplectite consisting of amphibole + spinel, clinopyroxene + spinel and, more rarely, orthopyroxene + spinel. The textural features of the metagabbros can be explained by the breakdown of the olivine + plagioclase pair, producing orthopyroxene coronas and clinopyroxene + spinel symplectites, followed by the formation of amphibole + spinel symplectites, reflecting a decrease in temperature and, possibly, an increase in water activity with respect to the previous stage. The metagabbros underwent a complex P,T history consisting of an igneous stage followed by cooling in granulite, amphibolite and greenschist facies conditions. Although the P,T conditions of emplacement of the igneous protolith are still doubtful, the magmatic assemblage suggests that igneous crystallization occurred at a pressure lower than 6 kbar and at 900,1100 °C. Granulitic P,T conditions have been estimated at about 900 °C and 7,8 kbar combining conventional thermobarometry and pseudosection analysis. Pseudosection calculation has also shown that the formation of the amphibole + spinel symplectite could have been favoured by an increase in water activity during the amphibolite stage, as the temperature of formation of this symplectite strongly depends on aH2O (<740 °C for aH2O = 0.5; <790 °C for aH2O = 1). Furthermore, but not pervasive, re-equilibration under greenschist facies P,T conditions is documented by retrograde epidote and chlorite. The resulting counterclockwise P,T path consists of progressive, nearly isobaric cooling from the igneous stage down to the granulite, amphibolite and greenschist stage. [source] A comparative U,Th,Pb (zircon,monazite) and 40Ar,39Ar (muscovite,biotite) study of shear zones in northern Victoria Land (Antarctica): implications for geochronology and localized reworking of the Ross OrogenJOURNAL OF METAMORPHIC GEOLOGY, Issue 6 2007G. DI VINCENZO Abstract Mylonitic granites from two shear zones in northern Victoria Land (Antarctica) were investigated in order to examine the behaviour of the U,Th,Pb system in zircon and monazite and of the 40Ar,39Ar system in micas during ductile deformation. Meso- and micro-structural data indicate that shear zones gently dip to the NE and SW, have an opposite sense of shear (top-to-the-SW and -NE, respectively) and developed under upper greenschist facies conditions. In situ U,Pb dating by laser-ablation inductively coupled plasma-mass spectrometry of zircon areas with well-preserved igneous zoning patterns (c. 490 Ma) confirm that granites were emplaced during the Early Cambrian to Early Ordovician Ross,Delamerian Orogeny. Monazite from the Bier Point Shear Zone (BPSZ) mainly yielded U,Th,Pb ages of c. 440 Ma, in agreement with in-situ Ar laserprobe ages of syn-shear muscovite and with most Ar ages of coexisting biotite. The agreement of ages derived from different decay schemes and from minerals with different crystal-chemical features suggests that isotope transport in the studied sample was mainly controlled by (re)crystallization processes and that the main episode of ductile deformation in the BPSZ occurred at c. 440 Ma. Cathodoluminscence imaging showed that zircon from the BPSZ contains decomposed areas with faint relics of oscillatory zoning. These areas yielded a U,Pb age pattern which mimics that of monazite but is slightly shifted towards older ages, supporting previous studies which suggest that ,ghost' structures may be affected by inheritance. In contrast, secondary structures in zircon from the Mt. Emison Shear Zone (MESZ) predominantly consist of overgrowths or totally recrystallized areas and gave U,Pb ages of c. 450 and 410 Ma. The c. 450-Ma date matches within errors most monazite U,Th,Pb ages and in-situ Ar ages on biotite aligned along the mylonitic foliation. This again suggests that isotope ages from the different minerals are (re)crystallization ages and constrains the time of shearing in the MESZ to the Late Ordovician. Regionally, results indicate that shear zones were active in the Late Ordovician,Early Silurian and that their development was partially synchronous at c. 440 Ma, suggesting that they belong to a shear-zone system formed in response to ,NE,SW-directed shortening. Taking into account the former juxtaposition of northern Victoria Land and SE Australia, we propose that shear zones represent reactivated zones formed in response to stress applied along the new plate margin as a consequence of contractional tectonics associated with the early stages (Benambran Orogeny) of the development of the Late Ordovician,Late Devonian Lachlan Fold Belt. [source] Geochemical and stable isotope resetting in shear zones from Täschalp: constraints on fluid flow during exhumation in the Western AlpsJOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2003I. Cartwright Abstract Fluid flow at greenschist facies conditions during exhumation of the western Alps occurred in several penecontemporaneous systems, including shear zones at lithological contacts, deformed contacts between serpentinite bodies and metabasalts, albite veins within metabasalts, and calcite + quartz veins within calcareous schists. Fluid flow in shear zones that juxtapose metasediments and ophiolitic rocks within the Piemonte Unit reset O and H isotope ratios. ,18O values are buffered by the wall rocks; however, calculated fluid ,2H values are similar within all the shear zones suggesting that they formed an interconnected network. The similarity of ,2H values of the sheared rocks and those of unsheared calcareous schists suggests that the fluids were derived from, or had equilibrated with, the schists that envelop the ophiolite rocks. Time-integrated fluid fluxes at the sheared contacts estimated from changes in Si in metabasalts were up to 105 m3 m,2, with the fluid flowing up temperature driven either by topography or seismic pumping. Individual shear zones were active for c. 2,3 Myr, implying average fluid fluxes of up to 10,9 m3 m,2 s,1. Rocks in shear zones within the ophiolite away from contacts with the metasediments show much less marked isotopic and geochemical changes, implying that fluid volumes decreased into the ophiolite unit, consistent with the source of fluids being the metasediments. Fluids were generated by dehydration reactions that were intersected during exhumation and, while many rocks show the affects of fluid,rock interaction, large-scale fluid flow between major units was not common. [source] Types of Pyrophyllite Deposits in FoldbeltsRESOURCE GEOLOGY, Issue 4 2005Irina Sinyakovskaya Abstract. Pyrophyllite deposits can be divided into five types on the basis of geology and genesis. The first two types are associated with hydrothermally altered rocks in felsic and intermediate volcanogenic suites. They are characterized by their metasomatites and their subsequent mineralogic transformations under varying volcanic conditions. The third type includes deposits and occurrences of metamorphic-metasomatic genesis, which is caused by transformations of terrigenous-sedimentary interbeds in felsic volcanics under greenschist facies conditions. The fourth type is associated with low and mid-temperature stages of hydrothermal vein formation at the limits of volcanogenic and metamorphic strata. The fifth type comprises pyrophyllite occurrences in weathering crusts on metamorphic strata and metasomatite. The formation conditions and distribution of raw pyrophyllite deposits were influenced by the geodynamic situations and geochemical conditions, such as character of tectonic dislocations, volcanism and chemical composition of hydrothermal solutions. [source] |