Granular Staining (granular + staining)

Distribution by Scientific Domains


Selected Abstracts


The proteasome inhibitor, MG132, promotes the reprogramming of translation in C2C12 myoblasts and facilitates the association of hsp25 with the eIF4F complex

FEBS JOURNAL, Issue 17 2004
Joanne L. Cowan
The eukaryotic translation initiation factor (eIF) 4E, is regulated by modulating both its phosphorylation and its availability to interact with the scaffold protein, eIF4G, to form the mature eIF4F complex. Here we show that treatment of C2C12 myoblasts with the proteasomal inhibitor, MG132 (N -carbobenzoxyl-Leu-Leu-leucinal), resulted in an early decrease in protein synthesis rates followed by a partial recovery, reflecting the reprogramming of translation. The early inhibition of protein synthesis was preceded by a transient increase in eIF2, phosphorylation, followed by a sustained increase in eIF4E phosphorylation. Inhibition of eIF4E phosphorylation with CGP57380 failed to prevent translational reprogramming or the moderate decrease in eIF4F complexes at later times. Prolonged incubation with MG132 resulted in the increased expression of heat shock protein (hsp)25, ,B-crystallin and hsp70, with a population of hsp25 associating with the eIF4F complex in a p38 mitogen-activated protein kinase-dependent manner. Under these conditions, eIF4GI, and to a lesser extent eIF4E, re-localized from a predominantly cytoplasmic distribution to a more perinuclear and granular staining. Although MG132 had little effect on the colocalization of eIF4E and eIF4GI, it promoted the SB203580-sensitive association of eIF4GI and hsp25, an effect not observed with ,B-crystallin. Addition of recombinant hsp25 to an in vitro translation assay resulted in stimulation of on-going translation and a moderate decrease in de novo translation, indicating that this modified eIF4F complex containing hsp25 has a role to play in recovery of mRNA translation following cellular stress. [source]


A clonal cutaneous CD30+ lymphoproliferative eruption in a patient with evidence of past exposure to hepatitis E

INTERNATIONAL JOURNAL OF DERMATOLOGY, Issue 7 2000
Freddye M. Lemons-Estes CDR, MC USN
The patient was a 52-year-old white man who had worked in remote areas of the world during the past 2 years, including an extended period in rural areas of Central Africa and in Central and South America. He had no acute illnesses during the 2-year period except for rare, mild, upper respiratory tract infections. For approximately 1 year, however, he had developed recurrent, papular-vesicular, slightly painful lesions on the fingers and palms, that spontaneously healed over weeks to months ( Fig. 1). The patient had no other concurrent illnesses and no abnormal laboratory findings, except for positive enzyme-linked immunoabsorbent assay (ELISA) for immunoglobulin G (IgG) antibodies for hepatitis E virus (HEV) using a recombinant expressed HEV antigen (Genelabs Technologies, Inc., San Antonio). Prolonged treatment with minocycline did not appear to moderate the lesions. At approximately 2.5 years after the development of his first cutaneous lesion, however, the patient reported that he had had no new lesions for over 3 months. Figure 1. Vesicular ,lesion on the finger which regressed over a period of weeks A biopsy specimen showed an intraepidermal vesicle with prominent epidermal necrosis and reticular degeneration ( Fig. 2). Within the epidermis, there was a dense infiltrate of lymphoid cells. The majority of these cells were pleomorphic with prominent nucleoli and frequent mitotic figures ( Fig. 3). Sheets of atypical cells were found in the subjacent dermis. The infiltrate extended down into the reticular dermis. With extension into the dermis, the infiltrate became more polymorphous with more small lymphoid cells, large numbers of eosinophils, and some plasma cells located more deeply. Figure 2. Intraepidermal ,blister showing reticular degeneration and marked epidermotrophism of large atypical cells with extension into the dermis with a mixed infiltrate containing eosinophils and plasma cells (30×) Figure 3. Intraepidermal ,infiltrate of large atypical cells with extension into the dermis with a mixed infiltrate containing eosinophils and plasma cells (400×) Immunohistochemical stains for CD3 (DAKO), CD4 (Becton Dickinson), CD8 (Becton Dickinson), CD15 (LeuM1, Becton Dickinson), CD20 (L-26, DAKO), CD30 (Ber-H2, DAKO), CD45RO (UCHL1, DAKO), S-100 protein (DAKO), T-cell intracellular antigen (TIA) (Coulter), epithelial membrane antigen (EMA) (DAKO), KP-1 (CD68, DAKO), MAC-387 (DAKO), Epstein,Barr virus (EBV) latent membrane antigen-1 (LMP-1, DAKO), and EBV-encoded nuclear antigen 2 (EBNA2, DAKO) were performed on formalin-fixed tissue using the ABC method with DABA as the chromagen. CD3 showed diffuse membrane staining of the large atypical lymphoid cells, as well as the majority of the small lymphoid cells ( Fig. 4). CD4 showed positive membrane staining of the large atypical lymphoid cells and the majority of the small lymphoid cells. CD8 showed only scattered light membrane staining of small lymphoid cells. CD15 was negative, and CD20 showed foci of groups of small lymphoid cells mainly within the reticular dermis. CD30 showed positive membrane and paranuclear staining of the large atypical cells, most abundant within the epidermis and papillary dermis ( Fig. 5). CD45RO showed positive membrane staining of the large atypical cells and the majority of the small lymphoid cells. S-100 protein showed increased dendritic cells within the surrounding viable epidermis and the subjacent papillary dermis ( Fig. 6). TIA showed granular staining in the large atypical lymphoid cells and only rare staining in small lymphoid cells ( Fig. 7). EMA staining was essentially negative. KP-1 showed only scattered positive cells mainly in the lower papillary and the reticular dermis. MAC-387 showed membrane staining in the viable epidermis ( Fig. 8). LMP-1 and EBNA2 for EBV were negative within the lymphoid cells as well as within the overlying epidermis. Figure 4. Immunohistochemical ,staining for CD3 showing diffuse staining of lymphoid cells within the epidermis and dermis (150×) Figure 5. Immunohistochemical ,staining for CD30 showing membrane and paranuclear staining of large atypical lymphoid cells within the epidermis and papillary dermis (a, 150× b, 400×) Figure 6. Immunohistochemical ,staining for S-100 protein within the epidermis and in the papillary dermis (a, 150× b, 300×) Figure 7. Immunohistochemical ,granular staining of large atypical lymphoid cells for TIA (200×) Figure 8. Immunohistochemical ,staining for MAC-387 showing epidermal staining (100×) Gene rearrangement studies showed a ,-T-cell receptor gene rearrangement. The monoclonal band was detected with VJ1, VJ2, and D1J2 primer sets. The T-cell receptor , rearrangement assay has a sensitivity of 61% and a specificity of 94% for the detection of a monoclonal rearrangement in T-cell lymphomas for which amplifiable DNA can be recovered. Electron microscopy was performed on formalin-fixed material, positive-fixed with 2.5% phosphate-buffered glutaraldehyde and further with 1% osmium tetroxide by standard techniques. Intracellular, 50,60-nm, cytoplasmic, spherical, viral-like particles were identified ( Fig. 9). Figure 9. Electron ,microscopy showing 50,60-nm diameter, intracellular, viral-like particles (arrows) (70,000×) [source]


Osteopontin expression correlates with prognostic variables and survival in clear cell renal cell carcinoma

JOURNAL OF SURGICAL ONCOLOGY, Issue 4 2006
Koviljka Matusan MD
Abstract Background and Objectives Osteopontin (OPN) is a phosphorylated glycoprotein with diverse functions including tumorigenesis and tumor cell metastasis. Recently, it has been detected in a growing number of human tumors, and assessed as a potential prognostic marker. The aim of this study was to analyze the expression of OPN in normal renal tissue and clear cell renal cell carcinomas (CRCCs), and to assess its prognostic significance. Methods The expression of OPN protein was immunohistochemically analyzed in 171 CRCCs and compared to usual clinicopathological parameters such as tumor size, nuclear grade, pathological stage, Ki-67 proliferation index, and cancer-specific survival. Results In normal renal parenchyma, the expression of OPN was seen in distal tubular epithelial cells, calcifications, and some stromal cells. The upregulation of OPN was observed in 61 CRCCs (35.7%) in the form of cytoplasmic granular staining of various intensities. Statistical analysis showed correlation of the OPN expression with tumor size (P,<,0.001), Fuhrman nuclear grade (P,<,0.001), pathological stage (P,=,0.011), and Ki-67 proliferation index (P,<,0.001). Moreover, patients with OPN-positive tumors had significantly worse prognosis in comparison to patients with tumors lacking OPN protein (P,=,0.004). Conclusion Our results suggest that overexpression of OPN is involved in the progression of CRCC. J. Surg. Oncol. 2006;94:325,331. © 2006 Wiley-Liss, Inc. [source]


LRRK2 is a component of granular alpha-synuclein pathology in the brainstem of Parkinson's disease

NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 3 2008
J. Alegre-Abarrategui
Classical Parkinson's disease (PD) is characterized by the appearance of Lewy bodies (LBs) in affected brain regions, showing mostly compact alpha-synuclein deposition, in contrast with punctate or granular deposition, hypothesized to represent early stages of aggregation. Leucine-rich repeat kinase 2 (LRRK2) is the commonest mutated gene in inherited and idiopathic PD. LRRK2 mutation carriers display a diverse neuropathology, including alpha-synuclein and tau inclusions, suggesting an upstream role for LRRK2 in protein aggregation. We studied LRRK2 expression throughout the normal human brain with three different antibodies. We also examined the pattern of LRRK2 expression in relation to alpha-synuclein aggregation and LB formation in the brainstem of sporadic LB disease. Physiological LRRK2 expression was not restricted to regions preferentially affected in PD and LRRK2 often localized to the nuclear envelope in addition to the known cytoplasmic expression. In PD, we were able to consistently detect LRRK2 in the halo of a minority (approximately 10%) of nigral LBs using three different antibodies. Only one antibody detected LRRK2 in the core of approximately 80% of classic LBs. In the lower brainstem, most notably in the dorsal motor nucleus of the vagus, we found previously unrecognized LRRK2 labelling of complex globular lesions, filled with LB-like matter showing a punctate or granular staining for alpha-synuclein. This was often accompanied by strong LRRK2 expression within dystrophic neurites. Our findings confirm widespread physiological LRRK2 expression in the human brain and suggest an association of LRRK2 with possible early-stage alpha-synuclein pathology in the brainstem of PD. [source]


Immunoglobulin uptake and processing by Schistosoma mansoni

PARASITE IMMUNOLOGY, Issue 9 2006
C. THORS
SUMMARY Intravascular Schistosoma mansoni worms seem to take up immunoglobulins from blood by surface Fc-receptors, but the process whereby bound immunoglobulins are processed by the parasite is poorly understood. We here present morphological data suggesting that two distinct main processes are involved: Host immunoglobulins were seen at two distinct locations in the parasite: in the frontal part of the enteric tube, the oesophagus, and as a fine granular staining at the surface and in the subtegumental region. The latter staining pattern corresponds to host immunoglobulin localization in discrete organelle-like aggregates tentatively identified as ,discoid or elongate bodies' at the ultrastructural level using immunogold staining. Immunoglobulin uptake by intravascular worms was also demonstrated in vivo after passive administration of 125I-labelled rabbit and mouse immunoglobulins. Radiolabelled immunoglobulins were taken up by the worms and shown to localize as fine strands running perpendicular to the parasite surface. Our results suggest that intravascular schistosomes take up host immunoglobulins both as part of their enteric digestion and by a surface Fc-receptor-mediated mechanism, involving transport and processing within organelles, ,elongate bodies'. Immunoglobulins taken up by intravascular schistosomes form a distinct organelle-like granules, which seem to be processed within the excretory system of the parasite. [source]


Leptospirosis pulmonary haemorrhage syndrome is associated with linear deposition of immunoglobulin and complement on the alveolar surface

CLINICAL MICROBIOLOGY AND INFECTION, Issue 6 2010
J. Croda
Clin Microbiol Infect 2010; 16: 593,599 Abstract Leptospirosis is a zoonotic infection associated with severe diseases such as leptospirosis pulmonary haemorrhage syndrome (LPHS). The cause of pulmonary haemorrhage is unclear. Understanding which mechanisms and processes are involved in LPHS will be important in treatment regimens under development for this life-threatening syndrome. In the present study, we evaluated 30 lung specimens from LPHS patients and seven controls using histology and immunohistochemistry (detection of IgM, IgG, IgA and C3) in order to describe the pathological features associated with this syndrome. Immunoglobulin deposits were detected on the alveolar surface in 18/30 LPHS patients. Three staining patterns were observed for the immunoglobulins and C3 in the lung tissues of LPHS patients: AS, delicate linear staining adjacent to the alveolar surface, which was indicative of a membrane covering the luminal surface of type I and II pneumocyte cells; S, heterogeneous staining which was sporadically distributed along the alveolar septum; and IA, weak, focal intra-alveolar granular staining. Human LPHS is associated with individual and unique histological patterns that differ from those of other causes of pulmonary haemorrhage. In the present study, it was found that the linear deposition of immunoglobulins (IgA, IgG and IgM) and complement on the alveolar surface may play a role in the pathogenesis of pulmonary haemorrhage in human leptospirosis. [source]