Granular Activated Carbon (granular + activated_carbon)

Distribution by Scientific Domains


Selected Abstracts


Performance of Dual-Media Expanded Bed Bioreactor

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 5-6 2005
R. Abdul-Rahman
Abstract Adsorption and biological treatment are two possible approaches to remove chloro-organic and organic compounds. Granular activated carbon (GAC) biofilm reactors combine these two features, the adsorptive capacity and irregular shape of GAC particles providing niches for bacterial colonisation protected from high fluid forces, while the variety of functional groups on the surface enhance the attachment of microorganisms. The biofilm process is compact and offers reactions in both aerobic and anoxic states. Studies on removal of nitrogen constituents by a biofilm process were carried out using a dual-media expanded bed bioreactor, with GAC and plastic media as support media. The plastic media also acts as a filter for the effluent. Experiments were carried out at F:M of about 0.45 and hydraulic residence times (HRT) of 48, 24 and 12 hours. Bed expansion was maintained at 20,30% by recirculation flow. Aerobic condition was maintained at dissolved oxygen (DO) of about 2 mg/l throughout the bed. Chemical oxygen in demand (COD) in feed was 1000 mg/L while the total-N was 100 mg/L. Analysis showed that the process is able to maintain very stable conditions, achieving substantial COD removal of about 85% and total-N removal of about 80%. Biofilm biomass measurements showed an increase from 400 mg/l at HRT of 48 hours to 10,100 mg/l at HRT 12 hours, showing that much higher biomass concentrations may be contained in a biofilm process as compared to a conventional suspended biomass process. Bioreactors contain their own ecosystems, the nature of the community and the state of microorganisms define the kinetics and determine reactor performance. Growth kinetic parameters obtained are YH = 0.3421 mg/mg, m,H = 0.2252 day,1, KH = 319.364 mg/l and bH = 0.046 day,1. The denitrification kinetic parameters obtained are YHD = 0.9409 mg/mg, m,HD = 0.1612 day,1, KHD = 24.6253 mg/l and bHD = 0.0248 day,1. These parameters enable prediction of required reactor sizes and operational parameters. The plastic media has greatly improved effluent clarification by 98% as compared to single-media (GAC) only reactor. [source]


An Evaluation of Physicochemical Treatment Technologies for Water Contaminated with MTBE

GROUND WATER MONITORING & REMEDIATION, Issue 4 2000
Arturo A. Keller
Treatment of methyl tertiary-butyl ether (MTBE) from contaminated surface and ground water supplies presents specific challenges due to the physicochemical properties of MTBE that depend strongly on its hydrophilic nature, and translate into a high solubility in water, and low Henry's constant and low affinity for common adsorbents. We evaluate four treatment technologies-air stripping, granular activated carbon (GAC), hydrophobic hollow fiber membranes, and advanced oxidation processes (AOP)-using ozone or ozone/hydrogen peroxide. Experimental work was carried out to generate parameter values necessary for the design of these processes. Ten different flow rates/concentration combinations were evaluated in our designs to cover the range from high flow rate/low concentration typical of surface water and ground water drinking water supplies to low flow rate/high concentration typical of ground water remediation sites. For all cases, the processes were designed to produce effluent water of 5 ,g/L or less. Capital costs and operation and maintenance costs were determined at the feasibility level by using standard engineering estimating practices. Air stripping is the lowest cost technology for high flow rales (100 to 1000 gpm) if no air treatment is required. Hollow fiber membranes are the lowest cost technology for flow rates of 10 to 100 gpm if no air treatment is required, which is typical at these low flow rates. GAC will be most costeffective at all flow rates if air treatment is required and the influent water has low levels of other organic compounds. AOP using ozone or ozone/hydrogen peroxide is in all cases more expensive than the alternative technologies, and there are sufficient uncertainties at this point with respect to byproducts of AOP to warrant further study of this technology. The cost of treating MTBE-contaminated water for conventional technologies such as air stripping and GAC is 40% to 80% higher than treating water contaminated only with other hydrocarbons such as benzene. [source]


Long-term performance of co-metabolic degradation of trichloroethylene in a fluidized bed reactor fed with benzene, toluene and xylene

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 4 2008
Wei-Min Wu
Abstract BACKGROUND: Trichloroethylene (TCE) can be degraded under aerobic condition with toluene and other aromatic compounds. Inhibition by primary substrates and toxicity of TCE oxidation influence TCE degradation. RESULTS: Long-term co-metabolic degradation of TCE was evaluated using a laboratory-scale fluidized bed reactor (12 L) with granular activated carbon (1.57 kg) as media and activated sludge as inoculum. The reactor was fed with TCE and a mixture of benzene, toluene and xylene (BTX) and operated with one-pass (hydraulic retention time (HRT) of 5,6 min) for 6 months and then with recirculation (HRT of 20,30 min) for 18 months. BTX/TCE-degrading biofilm was developed within 1 month. TCE was effectively degraded with influent TCE concentrations from 48 to 280 µg L,1. BTX inhibited TCE degradation. Recirculation (or long HRT) increased TCE removal efficiency from 30% with one-pass to 90%. BTX/TCE load ratio influenced TCE removal efficiency and TCE/BTX removal ratio. TCE degradation fitted first-order kinetics. The biomass grown in the reactor also degraded cis -1,2-dichloroethylene (DCE), trans -1,2-DCE and vinyl chloride efficiently except for 1,1-DCE. CONCLUSION: Co-metabolic degradation of TCE by BTX-degrading biomass from activated sludge is sustainable in the long term. BTX/TCE load ratio is a key parameter for TCE removal performance. Copyright © 2008 Society of Chemical Industry [source]


2,4,6-Trichlorophenol and phenol removal in methanogenic and partially-aerated methanogenic conditions in a fluidized bed bioreactor

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 10 2005
Claudio Garibay-Orijel
Abstract A fluidized bed bioreactor (FBBR) was operated for more than 575 days to remove 2,4,6-trichlorophenol (TCP) and phenol (Phe) from a synthetic toxic wastewater containing 80 mg L,1 of TCP and 20 mg L,1 of Phe under two regimes: Methanogenic (M) and Partially-Aerated Methanogenic (PAM). The mesophilic, laboratory-scale FBBR consisted of a glass column (3 L capacity) loaded with 1 L of 1 mm diameter granular activated carbon colonized by an anaerobic consortium. Sucrose (1 g COD L,1) was used as co-substrate in the two conditions. The hydraulic residence time was kept constant at 1 day. Both conditions showed similar TCP and Phe removal (99.9 + %); nevertheless, in the Methanogenic regime, the accumulation of 4-chlorophenol (4CP) up to 16 mg L,1 and phenol up to 4 mg L,1 was observed, whereas in PAM conditions 4CP and other intermediates were not detected. The specific methanogenic activity of biomass decreased from 1.01 ± 0.14 in M conditions to 0.19 ± 0.06 mmolCH4 h,1 gTKN,1 in PAM conditions whereas the specific oxygen uptake rate increased from 0.039 ± 0.008 in M conditions to 0.054 ± 0.012 mmolO2 h,1 gTKN,1, which suggested the co-existence of both methanogenic archaea and aerobic bacteria in the undefined consortium. The advantage of the PAM condition over the M regime is that it provides for the thorough removal of less-substituted chlorophenols produced by the reductive dehalogenation of TCP rather than the removal of the parent compound itself. Copyright © 2005 Society of Chemical Industry [source]


Application of heterogeneous adsorbents in removal of dimethyl phthalate: Equilibrium and heat

AICHE JOURNAL, Issue 10 2010
Jun Wu
Abstract Aminated resin (NDA-101) and oxidized resin (NDA-702) were synthesized to remove Dimethyl phthalate (DMP) from the contaminated water. The equilibrium and heat properties in the course of adsorption process were examined and compared with two commercial heterogeneous adsorbents, namely an acrylic ester resin (Amberlite XAD-7) and a coal-based granular activated carbon (AC-750). The associated equilibrium isotherms can be well fitted by Freundlich equation and the adsorption capacities for DMP followed the order: NDA-702 > NDA-101 > AC-750 > XAD-7. The surface of XAD-7 was demonstrated to be relatively homogeneous through surface energy heterogeneity analysis, offering the sole hydrogen bonding interaction. Contrarily, heterogeneous surface of oxidized resins NDA-702 and the aminated resins NDA-101 exhibited a promising adsorption capacity and affinity toward DMP probably derived by multiple hydrogen bonding, ,,, stacking, and micropore filling interactions. © 2010 American Institute of Chemical Engineers AIChE J, 2010 [source]


An investigation of the mechanisms of ultrasonically enhanced desorption

AICHE JOURNAL, Issue 2 2007
Oualid Hamdaoui
Abstract In this work, the mechanisms underlying ultrasonic desorption of 4-chlorophenol from granular activated carbon have been explored. Desorption experiments are investigated in the absence and presence of 516 kHz ultrasound of different intensities. Using three regenerating solutions and two temperatures, it has been shown that ultrasonic irradiation considerably improves both the amount and the rate of desorption. Desorption increases with increasing temperature and ultrasound intensity. The addition of sodium hydroxide or a mixture of sodium hydroxide and ethanol to the regenerating medium leads to an enhancement of the desorption, especially in the presence of ultrasound. The mechanisms of ultrasonically enhanced desorption is due both to the thermal and non-thermal (hydrodynamical) effects of ultrasound. Hydrodynamical phenomena are principally produced by the acoustic vortex microstreaming within porous solids as well as at the solid-liquid interface and by the high-speed micro-jets and high-pressure shock waves produced by acoustic cavitation. The thermal effects are evaluated as localized hot spots formed when bubbles cavitated as well as by global heating of the medium and piezoelectric transducer heating-up. Additionally, the non-thermal effect of ultrasound is greater than the thermal effect, and it is more noticeable when the ultrasonic irradiation is carried out in a high temperature regenerating medium. © 2007 American Institute of Chemical Engineers AIChE J 2007 [source]


Application of solid-phase concentration-dependent HSDM to the acid dye adsorption system

AICHE JOURNAL, Issue 1 2005
Vinci K. C. Lee
Abstract The fixed-bed adsorption of acid dyes onto granular activated carbon (Chemviron Filtrasorb 400) has been studied using a homogeneous surface diffusion model (HSDM). The model incorporates the external boundary layer mass transport and homogeneous diffusion inside the particle. A new orthogonal collocation method has been developed and used to solve the diffusion equations. This orthogonal collocation gives a faster solution method compared with the numerical Crank,Nicolson method. The surface diffusivity has been determined by an optimization procedure with minimization of sum of the error squared. The equilibrium relationship between the liquid-phase concentration and the solid-phase concentration has been described by the Redlich,Peterson isotherm. A solid-phase concentration-dependent surface diffusivity was introduced. The Darken model with the Redlich,Peterson isotherm was found to be a suitable correlation model for the adsorption of the acid dyes on carbon. The magnitude of the averaged Ds0 of each dye is in the order of AR114 > AB80 > AY117, which implies that, under the same solid-phase concentration gradient, the rate of mass transport diffusion is higher in AR114 than that in AB80 and AY117. This phenomenon may be explained by the different mobilities of the dye molecules present in the solution by the different arrangements of two sulfonic acid groups in the dye structures. © 2004 American Institute of Chemical Engineers AIChE J, 51: 323-332, 2005 [source]


Sustainable soil remediation by refrigerated condensation at sites with "high-concentration" recalcitrant compounds and NAPL: Two case studies

REMEDIATION, Issue 1 2008
Lowell Kessel
Remediation of recalcitrant compounds at sites with high concentrations of volatile organic compounds (VOCs) or nonaqueous-phase liquids (NAPLs) can present significant technical and financial (long-term) risk for stakeholders. Until recently, however, sustainability has not been included as a significant factor to be considered in the feasibility and risk evaluation for remediation technologies. The authors present a framework for which sustainability can be incorporated into the remediation selection criteria focusing specifically on off-gas treatment selection for soil vapor extraction (SVE) remediation technology. SVE is generally considered an old and standard approach to in situ remediation of soils at a contaminated site. The focus on off-gas treatment technology selection in this article allows for more in-depth analysis of the feasibility evaluation process and how sustainable practices might influence the process. SVE is more commonly employed for recovery of VOCs from soils than other technologies and generally employs granular activated carbon (GAC), catalytic, or thermal oxidation, or an emerging alternative technology known as cryogenic-compression and condensation combined with regenerative adsorption (C3,Technology). Of particular challenge to the off-gas treatment selection process is the potential variety of chemical constituents and concentrations changing over time. Guidance is available regarding selection of off-gas treatment technology (Air Force Center for Environmental Excellence, 1996; U.S. Environmental Protection Agency, 2006). However, there are common shortcomings of off-gas treatment technology guidance and applications; practitioners have rarely considered sustainability and environmental impact of off-gas treatment technology selection. This evaluation includes consideration of environmental sustainability in the selection of off-gas treatment technologies and a region-specific (Los Angeles, California) cost per pound and time of remediation comparisons between GAC, thermal oxidation, and C3,Technology. © 2008 Wiley Periodicals, Inc. [source]


Initial investigation on the use of waterjets to place amendments in the subsurface

REMEDIATION, Issue 1 2005
John W. Cable
Quasi-passive in situ remediation technologies, such as the use of permeable reactive barriers to treat contaminated groundwater or applications of granular activated carbon to treat polychlorinated biphenyl (PCB)-contaminated, near-surface sediments, are proven or promising technologies that may be limited in application due to the traditional construction techniques normally used for placement in the environment. High-pressure waterjets have traditionally been used to excavate material during mining operations or to cut rock or other durable material. Waterjets have the potential to place amendments in the subsurface at depths greater than those that can be obtained using traditional construction techniques. Likewise, waterjets may have less negative impact on near-surface utilities and/or sensitive ecological systems. Laboratory experiments were performed to characterize the placement of two solid amendments in a simulated saturated aquifer. A second set of experiments was performed to characterize the effectiveness of waterjets for placing a third amendment in simulated intertidal sediments. The laboratory work focused on characterizing the nature of the waterjet penetration of the aquifer matrix and the saturated sediments, as well as the corresponding waterjet parameters of pressure, nozzle size, and injection time. The laboratory results suggest that field trials may be appropriate for future investigations. © 2005 Wiley Periodicals, Inc. [source]


Treatment of simulated arsenic contaminated groundwater using GAC-Cu in batch reactor: Optimization of process parameters

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2009
P. Mondal
Abstract This article deals with the experimental investigation related to the removal of arsenic from a simulated contaminated groundwater by the adsorption onto Cu2+ impregnated granular activated carbon (GAC-Cu) in presence of impurities like Fe and Mn. The effects of adsorbent concentration, pH, and temperature on the percentage removal of total arsenic (As(T)), As(III), and As(V) have been discussed. Under the experimental conditions, the optimum adsorbent concentration for GAC-Cu has been found to be 6,g/L with an agitation time of 24,h, which reduces the As(T) concentration from 188 to 8.5,µg/L. Maximum removal of As(V) and As(III) has been observed in the pH range of 7,9 and 9,11, respectively. Removal of all the above said arsenic species decreases slightly with increase in temperature. Presence of Fe and Mn increases the adsorption of arsenic species. Under the experimental conditions, at 30°C, maximum % removals of As(T), As(III), As(V), Fe, and Mn are found to be 95.5%, 93%, 98%, 100%, and 40%, respectively. It has also been observed that maximum regeneration (,94%) of spent GAC-Cu is exhibited by a 5NH2SO4 solution. Le présent document traite de la vérification expérimentale liée à l'élimination de l,arsenic, dans une eau souterraine à contamination simulée, par adsorption dans du charbon actif en grains (CAG-Cu) imprégné de Cu2+, en présence d'impuretés comme du fer et du manganèse. Les effets de la concentration adsorbante, du pH et de la température sur le pourcentage d'élimination de l,arsenic total (As [T]), As(III) et As(V) ont fait l,objet de discussions. Dans des conditions expérimentales, on a déterminé que la concentration adsorbante optimale dans le cas du CAG-Cu est de 6,g/L avec un temps d'agitation de 24,h, ce qui réduit la concentration d'As(T) de 188,µg/L à 8.5 µg/L. Selon les observations, l,élimination maximale d'As(V) et d'As(III) se situe dans les gammes de pH de 7 à 9 et 9 à 11 respectivement. L'élimination de toutes les espèces d'arsenic mentionnées ci-dessus décroît légèrement en fonction de l,augmentation de la température. La présence de fer et de manganèse augmente l,adsorption des espèces d'arsenic. Dans des conditions expérimentales, à 30 °C, on a déterminé que les pourcentages d'élimination maximums d'As(T), d'As(III), d'As(V), de Fe et de Mn sont de 95.5%, 93%, 98%, 100% et 40% respectivement. On a également observé que la régénération maximale (,94%) du CAG-Cu usé est représentée par une solution 5NH2SO4. [source]


Nutshells as granular activated carbons: physical, chemical and adsorptive properties,

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 5 2001
H Wartelle
Abstract Nutshells from seven different sources (pistachio, hazelnut, almond, black walnut, English walnut, macadamia nut, pecan) were converted to granular activated carbons (GACs) by carbon dioxide activation. A portion of the GACs were oxidized with compressed air and the physical (yield, surface area, attrition), chemical (pH, surface charge) and adsorptive (organics uptake, metal ion uptake) properties of both oxidized and non-oxidized carbons were determined. Differences in uptake of organics, especially of polar compounds, were found between GACs made from almond shells, the group consisting of black walnut shells, English walnut shells and pecan shells, and macadamia nutshells. Oxidation had its greatest effects on pH, surface charge and uptake of metal ions. The changes due to oxidation were found to be independent of carbon source material. GACs with specific properties can be produced with judicious selection of carbon precursor and oxidative treatment. © 2001 Society of Chemical Industry [source]