Grassland Management (grassland + management)

Distribution by Scientific Domains


Selected Abstracts


Effects of raised water levels on wet grassland plant communities

APPLIED VEGETATION SCIENCE, Issue 3 2009
Sarah E. Toogood
Abstract Questions: What are the effects of raised water levels on wet grassland plant communities and dynamics? To what extent do time since raised water levels, vegetation management and water regime influence community composition? Location: Pevensey Levels, southeast England, UK. Methods: Plant communities and hydrology were monitored during 2001-03 within 23 wet grassland meadows and pastures where water levels had been raised for nature conservation at different times over 21 years. Community variations were examined using species abundance and ecological traits. Results: Water regime, measured as duration of flooding, groundwater level and soil moisture was significantly related to plant community variation. Communities were divided into grasslands where inundation was shallow (,8 cm) and relatively short (,3 months) and sites where deeper flooding was prolonged (,5 months), supporting a variety of wetland vegetation. With increasing wetness, sites were characterised by more bare ground and wetland plants such as sedges, helophytes and hydrophytes, and species with a stress-tolerating competitive strategy. All sites showed considerable annual dynamics, especially those with substantially raised water levels. There were no significant relationships between time since water levels were raised and plant community composition. Grassland management exerted a limited influence upon vegetation compared to water regime. Conclusions: Grassland plant communities are responsive to raised water levels and have potential for a rapid transition to wetland vegetation, irrespective of grazing or cutting management. Creation or restoration of wet grasslands by (re)wetting is feasible but challenging due to the high dynamism of wetland plant communities and the need for substantially raised water levels and prolonged flooding to produce significant community changes. [source]


The impact of grassland management on archaeal community structure in upland pasture rhizosphere soil

ENVIRONMENTAL MICROBIOLOGY, Issue 3 2003
Graeme W. Nicol
Summary The community structure of rhizosphere soil Archaea from three grassland types, associated with different management practices, was examined at a site in the Borders region of Scotland, by analysis of 16S rRNA gene fragments amplified from 16S rDNA and from rRNA. Denaturing gradient gel electrophoresis (DGGE) and sequence analysis of amplified products indicated high relative abundance within the archaeal community of two distinct lineages of non-thermophilic (group 1) Crenarchaeota. Grassland management practices influenced archaeal community structure, as characterized by both 16S rRNA- and 16S rDNA-derived DGGE profiles. One band dominated DGGE profiles in all three grassland types examined, and reproducible differences in the presence and intensity of bands were observed between profiles from managed and natural grassland sites. Analysis of 16S rRNA-derived amplicons from managed and natural grasslands at sites in the north of England and the north of Wales also indicated high relative abundance of non-thermophilic crenarchaeotes within the archaeal community. The band dominating the Scottish grassland site also dominated DGGE profiles from the English and Welsh sites, and similar differences were seen between profiles derived from soils subjected to different management regimes. The study indicates that grassland archaeal communities are dominated by Crenarchaeota, with closely related members of this lineage ubiquitous in distribution in UK upland pasture, and indicate that management practices influence the nature of the crenarchaeotal community. [source]


Modelling the concentrations of nitrogen and water-soluble carbohydrates in grass herbage ingested by cattle under strip-grazing management

GRASS & FORAGE SCIENCE, Issue 1 2008
N. J. Hoekstra
Abstract There is scope of increasing the nitrogen (N) efficiency of grazing cattle through manipulation of the energy and N concentrations in the herbage ingested. Because of asymmetric grazing by cattle between individual plant parts, it has not yet been established how this translates into the concentrations of N and water-soluble carbohydrates (WSC) in the herbage ingested. A model is described with the objective of assessing the efficacy of individual tools in grassland management in manipulating the WSC and N concentrations of the herbage ingested by cattle under strip-grazing management throughout the growing season. The model was calibrated and independently evaluated for early (April), mid- (June, regrowth phase) and late (September) parts of the growing season. There was a high correlation between predicted and observed WSC concentrations in the ingested herbage (R2 = 0·78, P < 0·001). The correlation between predicted and observed neutral-detergent fibre (NDF) concentrations in the ingested herbage was lower (R2 = 0·49, P < 0·05) with a small absolute bias. Differences in the N concentration between laminae and sheaths, and between clean patches and fouled patches, were adequately simulated and it was concluded that the model could be used to assess the efficacy of grassland management tools for manipulating the WSC and N concentrations in the ingested herbage. Model application showed that reduced rates of application of N fertilizer and longer rotation lengths were effective tools for manipulating herbage quality in early and mid-season. During the later part of the growing season, the large proportion of area affected by dung and urine reduced the effect of application rate of N fertilizer on herbage quality. In contrast, relative differences between high-sugar and low-sugar cultivars of perennial ryegrass were largest during this period. This suggests that high-sugar cultivars may be an important tool in increasing N efficiency by cattle when risks of N losses to water bodies are largest. The model output showed that defoliation height affects the chemical composition of the ingested herbage of both the current and the subsequent grazing period. [source]


The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions

IBIS, Issue 4 2004
Ian Newton
In this paper, the main aspects of agricultural intensification that have led to population declines in farmland birds over the past 50 years are reviewed, together with the current state of knowledge, and the effects of recent conservation actions. For each of 30 declining species, attention is focused on: (1) the external causes of population declines, (2) the demographic mechanisms and (3) experimental tests of proposed external causal factors, together with the outcome of (4) specific conservation measures and (5) agri-environment schemes. Although each species has responded individually to particular aspects of agricultural change, certain groups of species share common causal factors. For example, declines in the population levels of seed-eating birds have been driven primarily by herbicide use and the switch from spring-sown to autumn-sown cereals, both of which have massively reduced the food supplies of these birds. Their population declines have been associated with reduced survival rates and, in some species, also with reduced reproductive rates. In waders of damp grassland, population declines have been driven mainly by land drainage and the associated intensification of grassland management. This has led to reduced reproductive success, as a result of lowered food availability, together with increased disturbance and trampling by farm stock, and in some localities increased nest predation. The external causal factors of population decline are known (with varying degrees of certainty) for all 30 species considered, and the demographic causal factors are known (again with varying degrees of certainty) for 24 such species. In at least 19 species, proposed causal factors have been tested and confirmed by experiment or by local conservation action, and 12 species have been shown to benefit (in terms of locally increased breeding density) from options available in one or more agri-environment schemes. Four aspects of agricultural change have been the main drivers of bird population declines, each affecting a wide range of species, namely: (1) weed-control, mainly through herbicide use; (2) the change from spring-sown to autumn-sown cereal varieties, and the associated earlier ploughing of stubbles and earlier crop growth; (3) land drainage and associated intensification of grassland management; and (4) increased stocking densities, mainly of cattle in the lowlands and sheep in the uplands. These changes have reduced the amounts of habitat and/or food available to many species. Other changes, such as the removal of hedgerows and ,rough patches', have affected smaller numbers of species, as have changes in the timings of cultivations and harvests. Although at least eight species have shown recent increases in their national population levels, many others seem set to continue declining, or to remain at a much reduced level, unless some relevant aspect of agricultural practice is changed. [source]


Survival rates, causes of failure and productivity of Skylark Alauda arvensis nests on lowland farmland

IBIS, Issue 4 2002
P. F. Donald
This paper analyses data from 995 Skylark Alauda arvensis nests found on lowland farms in southern England from 1996 to 1998. The majority of recorded nest failures were caused by predation except in agricultural grass, where trampling and agricultural operations were equally important. Nest survival rates varied between crop types, nests in cereals being around twice as likely to succeed as nests in grass or set-aside. In cereals, nest survival rates increased with increasing distance from the nearest tramline and declined over the course of the breeding season. Predator control also had a significant independent effect on nest survival rates. On one farm where many other factors were held constant, a highly significant increase in nest survival rates from 12.3% to 40.7% coincided with the introduction of intensive predator control, which also appeared to bring forward mean laying dates. Most environmental factors explaining significant variation in nest survival rates did so only at the chick stage. The mean number of chicks produced per nesting attempt was 1.26 in cereals, 0.78 in set-aside and 0.63 in grass, the differences being due primarily to variation in nest survival rates. Low densities of Skylark territories in cereal crops are not therefore the consequence of low breeding success at the scale of the individual nest and probably reflect limitations on the number of attempts made in a season. Measures taken to improve the attractiveness of cereal crops as a nesting habitat for Skylarks, and beneficial changes in grassland management, are likely to increase overall productivity. [source]


Grasslands, grazing and biodiversity: editors' introduction

JOURNAL OF APPLIED ECOLOGY, Issue 2 2001
Watkinson A.R.
Summary 1Natural, semi-natural and artificial grasslands occur extensively around the globe, but successful management for production and biodiversity poses several dilemmas for conservationists and farmland managers. Deriving from three continents (Africa, Australia and Europe), papers in this Special Profile interface three specific issues: plant responses to grazing, plant invasions and the responses to management of valued grassland biota. 2Although pivotal in grassland management, plant responses to grazing are sometimes difficult to predict. Two alternative approaches are presented here. The first uses natural variations in sheep grazing around a water hole to model the dynamic population response of a chenopod shrub. The second analyses a long-term grazing experiment to investigate the links between plant traits and grazing response. 3Linked often crucially with grazing, but also driven sometimes by extrinsic factors, invasions are often cause for concern in grassland management. The invasions of grasslands by woody plants threatens grassland habitats while the invasions of pastures by alien weeds reduces pasture productivity. The papers in this section highlight how a complementary range of management activities can reduce the abundance of invaders. A final paper highlights how global environmental change is presenting new circumstances in which grassland invasion can occur. 4The impact of grassland management on biodiversity is explored in this Special Profile with specific reference to invertebrates, increasingly recognized both for the intrinsic conservation value of many groups and for their role in ecosystem processes. The potential for manipulating flooding in wet grasslands to increase the soil invertebrate prey of wading birds is illustrated, together with the roles of management and landscape structure in enhancing insect diversity. 5In the face of climate change and growing demands for agricultural productivity, future pressures on grassland ecosystems will intensify. In this system in which productivity and conservation are so closely bound, there is a need both to raise the profile of the issues involved, and to improve our understanding of the applied ecology required for successful management. [source]


Grassland diversity related to the Late Iron Age human population density

JOURNAL OF ECOLOGY, Issue 3 2007
MEELIS PÄRTEL
Summary 1Species-rich semi-natural grasslands in Europe developed during prehistoric times and have endured due to human activity. At the same time, intensive grassland management or changes in land use may result in species extinction. As a consequence, plant diversity in semi-natural calcareous grasslands may be related to both historical and current human population density. 2We hypothesize that current vascular plant diversity in semi-natural calcareous grasslands is positively correlated with the Late Iron Age (c. 800,1000 years ago) density of human settlements (indicated by Late Iron Age fortresses and villages) due to enhancement of grassland extent and species dispersal, and negatively correlated with current human population density due to habitat loss and deterioration. 3We described the size of the community vascular plant species pool, species richness per 1 m2 and the relative richness (richness divided by the size of the species pool) in 45 thin soil, calcareous (alvar) grasslands in Estonia. In addition to historical and current human population density we considered simultaneously the effects of grassland area, connectivity to other alvar grasslands, elevation above sea level (indicating grassland age), soil pH, soil N, soil P, soil depth, soil depth heterogeneity, geographical east,west gradient, precipitation and spatial autocorrelation. 4Both the size of the community species pool and the species richness are significantly correlated with the Late Iron Age human population density. In addition, species richness was unimodally related to the current human population density. The relative richness (species ,packing density') was highest in the intermediate current human population densities, indicative of moderate land-use intensity. 5Community species pool size decreased non-linearly with increasing soil N, and was highest at intermediate elevation. Small-scale richness was greater when sites were well connected and when the elevation was intermediate. Spatial autocorrelation was also significant for both species pool size and small-scale richness. 6In summary, human land-use legacy from prehistoric times is an important aspect in plant ecology, which could be an important contributor to the current variation in biodiversity. [source]


Demographic variation and population viability in Gentianella campestris: effects of grassland management and environmental stochasticity

JOURNAL OF ECOLOGY, Issue 3 2001
Tommy Lennartsson
Summary 1,Transition matrix models were used to evaluate the effects of environmental stochasticity and four different methods of grassland management on dynamics and viability of a population of the biennial Gentianella campestris (Gentianaceae) in species-rich grassland. Data were collected between 1990 and 1995. 2,Continuous summer grazing, the prevailing management strategy in Scandinavian grasslands, resulted in high recruitment of new plants, mainly because litter accumulation was prevented and gaps were created by trampling. Trampling and repeated grazing, however, caused damage which reduced seed production. Lambda for the average matrix was c. 0.77, and a stochastic matrix model yielded an extinction probability for the total population of c. 0.08 within 50 years. 3,Mowing in mid-July (used as a conservation tool) increased seed production, but litter accumulation following re-growth of the vegetation prevented establishment. Lambda and extinction risk were similar to continuous grazing. 4,Mowing in October (another conservation tool) promoted recruitment because of low litter accumulation, but the seed output decreased because plant growth was impaired by tall vegetation. Lambda was 0.64, while the extinction probability was very high (c. 0.98 within 50 years). 5,Mid-July mowing followed by autumn grazing (the historical management regime) yielded high values for both seed production and establishment of rosettes. Lambda was 0.94 and the probability of extinction within 50 years was below detection level. 6,Log-linear analysis showed that the matrices differed significantly both between treatments and between years. The latter indicates environmental stochasticity, here caused by summer drought that increased the extinction risk. Lambda may be slightly underestimated because drought occurred in one out of five summers during the study period, which is high compared with the natural frequency. 7,We conclude that traditional grassland management is more favourable for G. campestris than the methods that prevail in Scandinavia today. This indicates a serious conservation problem, because grazing has replaced traditional management in many of the remaining semi-natural grasslands throughout Europe. [source]


Succession during the re-creation of a flood-meadow 1985-1999

APPLIED VEGETATION SCIENCE, Issue 2 2001
Alison W. McDonald
Rodwell (1993; 2000) for vascular plants Abstract. The study site, Somerford Mead, is located on the river Thames floodplain and was a species-rich flood-meadow in the 1950s. In the 1960s and 1970s it was subjected to intensive grassland management with regular NPK additions and occasional herbicide treatment. In 1981 Somerford Mead was ploughed for the first time and converted to arable land. Seeds of an Alopecuruspratensis-Sanguisorba officinalis flood-meadow community (MG4; Rodwell 1992) were sown onto prepared soil in the autumn of 1986, and botanical records were made from 1985 to 1999. From 1989 to 1999, three replicates of three treatments: cow-grazing, sheep-grazing and no-grazing were introduced after hay-cutting. Analysis successfully separated the establishment phase from the experimental phase and showed a significant difference between the grazed and ungrazed treatments. Abiotic and biotic factors which might contribute to successional trends are discussed. A convoluted pattern for each treatment could be attributed in part to intrinsic,cycles'of perennial hemicryptophytes behaving as short-lived species and in part to the percentage frequency of many species which was reduced in 1990 and 1995/1996, years of drought. After the initial inoculation of MG4 seed and the disappearance of arable therophytes, recruitment of new species was very slow. Coefficients for Somerford Mead matched against MG4 (Rodwell 1992) produced an equilibrium within three years. It subsequently fluctuated over a 10-yr period well below the level of Oxey Mead, the donor site. Land managers should ensure that their proposed site has the right soils and hydrology for MG4 grassland and that traditional management of hay-cutting and aftermath grazing is practised. Only one cut a year in July could lead to a reduction in percentage frequency of most species except Arrhenatherum elatius. [source]