Home About us Contact | |||
Government Services Canada (government + services_canada)
Selected AbstractsTrichoderma enzymes promote Fibrobacter succinogenes S85 adhesion to, and degradation of, complex substrates but not pure cellulose,JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 10 2004Diego P Morgavi Abstract The effects of an enzyme preparation from Trichoderma longibrachiatum (TE) on adhesion and growth of the fibrolytic rumen bacterium Fibrobacter succinogenes S85 was studied to gain a better understanding of the action of feed enzyme additives on fibre digestion by ruminants. Adhesion experiments were performed on crystalline cellulose, corn silage and alfalfa hay. Adhesion of F succinogenes to cellulose was negatively related to the concentration of TE (p < 0.05). At the highest concentration used, TE reduced adhesion to cellulose from 65 to 39%. For corn silage and alfalfa hay, TE stimulated adhesion at low levels (p < 0.05) but this effect was lost at higher levels. Culture experiments were performed on crystalline cellulose and corn silage. The presence of TE in media containing cellulose failed to increase substrate disappearance or gas production although it increased numbers of non-adherent bacteria (p < 0.05). When corn silage was used, the addition of TE increased NDF disappearance (p < 0.05) at 24 and 48 h (33 and 52% in controls versus 53 and 65% in TE treatments). Growth rate and gas production were also stimulated (p < 0.05). We conclude that, for cellulose, the hydrolytic enzymes in TE obstructed available binding sites decreasing bacterial adherence. Fibrobacter succinogenes digested cellulose efficiently and addition of exogenous cellulases did not further increase substrate disappearance. However, for complex plant substrates, low concentration of TE increased bacterial adhesion and plant (corn) fiber degradation. For the Department of Agriculture and Agri-Food, Government of Canada, © Minister of Public Works and Government Services Canada 2004. Published for SCI by John Wiley & Sons, Ltd. [source] Quantification of monomeric and polymeric wheat proteins and the relationship of protein fractions to wheat quality,JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 10 2003Jerry Suchy Abstract Wheat protein composition is important for understanding the biochemical basis of wheat quality. The objective of this study was to design a simple protein fractionation protocol with low cross-contamination and to show that these protein fractions were associated with wheat quality. The protocol consists of three sequential extractions from 100 mg of flour with 7.5% propan-1-ol and 0.3 M sodium iodide (monomeric-rich protein), 50% propan-1-ol (soluble glutenin-rich protein) and 40% propan-1-ol and 0.2% dithiothreitol (insoluble glutenin-rich protein). Nitrogen content of protein solubility groups was determined from dry residues using an automated combustion nitrogen analyser. About 90% of the total protein in the flour was solubilised. Cross-contamination of protein fractions was evaluated by SDS-PAGE, SE-HPLC and RP-HPLC. Variation in nitrogen content of the protein solubility fractions was lowest for monomeric-rich protein (<2%) and insoluble glutenin-rich protein (<4%). Three wheats with similar high-molecular-weight (HMW) glutenin subunit composition, Alpha 16, Glenlea and Roblin, varied significantly (P , 0.05) in the proportion of monomeric-rich and insoluble glutenin-rich protein in the flour. Dough rheological properties were directly related to the proportion of insoluble glutenin-rich protein and inversely related to the proportion of monomeric-rich protein. The protocol was validated using an expanded set of 11 wheats which also showed that inter-cultivar differences in the proportion of monomeric-rich, insoluble glutenin-rich protein and glutenin-to-gliadin ratio in the flour governed dough rheological properties such as mixograph, farinograph and microextension tests. The protocol has merit for quality screening in wheat-breeding programmes when the sample size is too small or when time constraints limit the ability to perform traditional rheological tests. For the Department of Agriculture and Agri-Food, Government of Canada, Copyright © Minister of Public Works and Government Services Canada 2003. Published for SCI by John Wiley & Sons, Ltd. [source] Flaxseed as a functional food source,JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 9 2001B Dave Oomah Abstract Flaxseed is emerging as one of the key sources of phytochemicals in the functional food arena. In addition to being one of the richest sources of ,-linolenic acid oil and lignans, flaxseed is an essential source of high-quality protein and soluble fibre and has considerable potential as a source of phenolic compounds. The implications of diets containing flaxseed or its components for human nutrition and disease prevention are analysed in this paper. Results of the first meta-analysis examining the relationship between intake of flaxseed or its components and risk reduction of disease in humans is presented. Some areas of potential opportunities and impact of using flaxseed or its components in the diet are highlighted. For the Department of Agriculture and Agri-Food, Government of Canada. © Minister of Public Works and Government Services Canada 2001. Published for SCI by John Wiley & Sons, Ltd. [source] Chemical residues and bioactivity of tebufenozide applied to apple foliagePEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 11 2004Michael J Smirle Abstract Tebufenozide, an insect growth regulator that acts as an ecdysone agonist, was applied at recommended label rate to apple trees in August 1997 and May 1998. Foliar residues were determined by high-performance liquid chromatography from samples collected 2, 24, 48 and 96 h post-spray, and at weekly intervals thereafter for 9 weeks in 1997 and 11 weeks in 1998. Foliage sampled at the same times was used in bioassays to determine residual toxicity to first-instar obliquebanded leafrollers, Choristoneura rosaceana (Harris). Residue decay followed first-order kinetics in both years, with residual half-life of 36.3 days in 1997 and 7.2 days in 1998. Estimates of the time needed to reduce bioactivity to 50% in bioassays were 18.7 days in 1997 and 36.3 days in 1998. The accuracy of equations describing decay of tebufenozide residues and bioactivity over time was not improved by using degree-day accumulations as the independent variable. For the Department of Agriculture and Agri-Food, Government of Canada, © Minister of Public Works and Government Services Canada 2004. Published for SCI by John Wiley & Sons, Ltd. [source] |