Home About us Contact | |||
Allogeneic Lymphocytes (allogeneic + lymphocyte)
Selected AbstractsImmunomodulation by mesenchymal stem cells and clinical experienceJOURNAL OF INTERNAL MEDICINE, Issue 5 2007K. Le Blanc Abstract Mesenchymal stem cells (MSCs) from adult marrow can differentiate in vitro and in vivo into various cell types, such as bone, fat and cartilage. MSCs preferentially home to damaged tissue and may have therapeutic potential. In vitro data suggest that MSCs have low inherent immunogenicity as they induce little, if any, proliferation of allogeneic lymphocytes. Instead, MSCs appear to be immunosuppressive in vitro. They inhibit T-cell proliferation to alloantigens and mitogens and prevent the development of cytotoxic T-cells. In vivo, MSCs prolong skin allograft survival and have several immunomodulatory effects, which are presented and discussed in the present study. Possible clinical applications include therapy-resistant severe acute graft-versus-host disease, tissue repair, treatment of rejection of organ allografts and autoimmune disorders. [source] Monocyte-derived dendritic cells from HCV-infected patients transduced with an adenovirus expressing NS3 are functional when stimulated with the TLR3 ligand poly(I:C)JOURNAL OF VIRAL HEPATITIS, Issue 11 2008I. Echeverrķa Summary., Dendritic cells (DC) transfected with an adenovirus encoding hepatitis C virus (HCV) NS3 protein (AdNS3) induce potent antiviral immune responses when used to immunize mice. However, in HCV infected patients, controversial results have been reported regarding the functional properties of monocyte-derived DC (MoDC), a cell population commonly used in DC vaccination protocols. Thus, with the aim of future vaccination studies we decided to characterize MoDC from HCV patients transfected with AdNS3 and stimulated with the TLR3 ligand poly(I:C). Phenotypic and functional properties of these cells were compared with those from MoDC obtained from uninfected individuals. PCR analysis showed that HCV RNA was negative in MoDC from patients after the culture period. Also, phenotypic analysis of these cells showed lower expression of CD80, CD86, and CD40, but similar expression of HLA-DR molecules as compared to MoDC from uninfected individuals. Functional assays of MoDC obtained from patients and controls showed a similar ability to activate allogeneic lymphocytes or to produce IL-12 and IL-10, although lower IFN-, levels were produced by cells from HCV patients after poly(I:C) stimulation. Moreover, both groups of MoDC induced similar profiles of IFN-, and IL-5 after stimulation of allogeneic T-cells. Finally, migration assays did not reveal any difference in their ability to respond to CCL21 chemokine. In conclusion, MoDC from HCV patients are functional after transduction with AdNS3 and stimulation with poly(I:C). These findings suggest that these cells may be useful for therapeutic vaccination in chronic HCV infection. [source] Combined Coinhibitory and Costimulatory Modulation with Anti-BTLA and CTLA4Ig Facilitates Tolerance in Murine Islet AllograftsAMERICAN JOURNAL OF TRANSPLANTATION, Issue 12 2007W. Truong Complex interactions between positive and negative cosignaling receptors ultimately determine the fate of the immune response. The recently identified coinhibitory receptor, B and T lymphocyte attenuator (BTLA), contributes to regulation of autoimmune and potentially alloimmune responses. We investigated the role of BTLA in a fully major histocompatibility complex-mismatched mouse islet transplant model. We report that anti-BTLA mAb (6F7) alone does not accelerate graft rejection. Rather, while CTLA4Ig alone improved allograft survival, the addition of anti-BTLA mAb to CTLA4Ig led to indefinite (>100 days) allograft survival. Immediately after treatment with anti-BTLA mAb and CTLA4Ig, islet allografts showed intact islets and insulin production despite a host cellular response, with local accumulation of Foxp3+ cells. We clearly demonstrate that combined therapy with anti-BTLA mAb and CTLA4Ig mice induced donor-specific tolerance, since mice accepted a second donor-specific islet graft without further treatment and rejected third party grafts. CTLA4Ig and anti-BTLA mAb limited the initial in vivo proliferation of CFSE-labeled allogeneic lymphocytes, and anti-BTLA mAb enhanced the proportion of PD-1 expressing T cells while depleting pathogenic BTLA+ lymphocytes. We conclude that targeting the BTLA pathway in conjunction with CTLA4Ig costimulatory blockade may be a useful strategy for promoting immunological tolerance in murine islet allografts. [source] NOS2 (iNOS) Deficiency in Kidney Donor Accelerates Allograft Loss in a Murine ModelAMERICAN JOURNAL OF TRANSPLANTATION, Issue 1 2007C. Du Renal NOS2 is expressed and produces abundant nitric oxide (NO) in various renal cells in response to proinflammatory cytokines. However, the role of this enzyme in renal allograft survival remains unknown. Kidney allotransplantation was performed in the murine model of C57BL/6J (H-2d) to nephrectomized Balb/c (H-2b) mice. Here we show that deficiency in NOS2 expression in kidney donors significantly advanced allograft failure, indicated by decreasing mean survival of recipients receiving NOS2 null grafts (15.4 ± 6.4 days) as compared to those with wild type grafts (65.4 ± 28.1 days) (p = 0.0005). Consistent with survival results, NOS2 null grafts had more severe renal tubule injury and decreased renal function compared to wild type grafts. In vitro NOS2 expressing TEC had greater resistance to allogeneic lymphocyte-mediated apoptosis. The addition of exogenous NO inhibited Fas-mediated TEC apoptosis and reduced proliferation of allogeneic lymphocytes. These data suggest that endogenous production of NO through renal NOS2 activity can play a protective role in kidney grafts through attenuating Fas-mediated donor cell apoptosis as well as by inhibiting proliferation of inflammatory infiltrating lymphocytes. Enhanced donor NOS2 expression may be a useful strategy to improve kidney transplant survival. [source] |