Home About us Contact | |||
Allochthonous Inputs (allochthonous + input)
Selected AbstractsThe effects of water-level manipulation on the benthic invertebrates of a managed reservoirFRESHWATER BIOLOGY, Issue 5 2010DANIEL C. McEWEN Summary 1. Reservoir creation and management can enhance many ecological services provided by freshwater ecosystems, but may alter the natural conditions to which aquatic biota have adapted. Benthic macroinvertebrates often reflect environmental conditions, and this community may be particularly susceptible to water-level changes that alter sediment exposure, temperature regime, wave-induced sediment redistribution and basal productivity. 2. Using a before,after control,impact experimental design, we assessed changes in macroinvertebrate community structure corresponding with changes in water-level management in two lentic systems in the Voyageurs National Park, Minnesota, U.S.A. Littoral zone (depths 1,5 m) benthic macroinvertebrate assemblages were sampled in Rainy Lake (control system) and Namakan Reservoir (impact system) in 1984,85, and again in 2004,05 following a change in water-level management that began in January 2000. The new regime reduced the magnitude of winter drawdown in Namakan Reservoir from 2.5 to 1.5 m, and allowed the reservoir to fill to capacity in late May, a month earlier than under the prior regime. Rainy Lake water levels were not altered substantially. 3. We found changes in macroinvertebrate community structure in Namakan Reservoir relative to Rainy Lake at 1,2 m depths but not at 3,5 m depths. These shallower depths would have been most directly affected by changes in sediment exposure and ice formation. 4. In 2004,05, Namakan Reservoir benthos showed lower overall abundance, more large-bodied taxa and an increase in non-insect invertebrates relative to 1984,85, without corresponding changes in Rainy Lake. 5. Changes in the benthic community in Namakan may reflect cooler water in spring and early summer as well as lower resource availability (both autochthonous production and allochthonous inputs) under the new regime. [source] Differential effects of elevated nutrient and sediment inputs on survival, growth and biomass of a common larval fish species (Dorosoma cepedianum)FRESHWATER BIOLOGY, Issue 3 2010MARÍA J. GONZÁLEZ Summary 1. Elevated allochthonous inputs of nutrients and sediments to aquatic ecosystems are associated with eutrophication and sedimentation. Reservoirs receive substantial subsidies of nutrients and sediments from catchments due to their large catchment : lake area ratios. We examined the effect of elevated subsidies of sediments and/or dissolved nutrients on the success (survival, growth, biomass and condition factor) of larval gizzard shad (Dorosoma cepedianum), a widespread and dominant omnivorous fish in reservoir ecosystems. 2. We simulated allochthonous agricultural subsides by manipulating dissolved nutrients and sediment inputs in a 2 × 2 factorial design in experimental mesocosms. We predicted that larval fish success would be greater under elevated nutrients. However, we propose two alternative hypotheses with respect to the overall effect of allochthonous sediment inputs. If sediment inputs negatively affect larval gizzard feeding success, larval success would be highest when only nutrients are added and lowest when only sediments are added (+N > +N+S , C > +S). If high turbidity enhances larval foraging activity (due to greater contrast between prey and background), we predict that larval success would be highest when both subsidy types (nutrients and sediment) are elevated, intermediate when either nutrients or sediments are added and the lowest when no subsidies are added (+N+S > +N , +S > C). 3. Our results indicate that elevated nutrient and sediment conditions enhanced larval gizzard shad biomass, but the overall nutrient addition effect was greater than the sediment addition effect (+N , +N+S > +S > C). We observed differential effects of nutrient and sediment inputs on larval survival, growth and condition factors. 4. The enhancement of fish biomass in elevated nutrients (+N, +N+S) relative to control conditions was associated with improved gizzard shad survival and not greater growth. The enhancement of fish biomass in the elevated sediment treatment (+S) relative to the control conditions was caused by an increase in survival that more than compensated for a negative effect of sediment addition on growth. 5. Our findings support the recommendation that reservoir management practices must consider the links between land use practices and food web dynamics. Our results suggest that reduction of subsidies of nutrients and sediments to productive reservoirs would decrease survival of larval gizzard shad due to lower food availability. [source] The significance of side-arm connectivity for carbon dynamics of the River Danube, AustriaFRESHWATER BIOLOGY, Issue 2 2008S. PREINER Summary 1. Side-arms connected to the main stem of the river are key areas for biogeochemical cycling in fluvial landscapes, exhibiting high rates of carbon processing. 2. This work focused on quantifying autochthonous and allochthonous carbon pools and, thereby, on comparing transport and transformation processes in a restored side-arm system of the River Danube (Regelsbrunn). We established a carbon budget and quantified carbon processing from March to September 2003. In addition, data from previous studies during 1997 to 1999 were assessed. 3. Gross primary production (GPP) and community respiration were estimated by diel oxygen time curves and an oxygen mass balance. Plankton primary production was determined to estimate its contribution to GPP under different hydrological conditions. 4. Based on the degree of connectivity, three hydrological phases were differentiated. Most of the organic matter, dominated by allochthonous carbon, was transported in the main channel and through the side-arm during floods, while at intermediate and low flows (and thus connectivity), transformation processes became more important and autochthonous carbon dominated the carbon pool. The side-arm system functioned as a sink for particulate matter [total suspended solids and particulate organic carbon (POC)] and a source of dissolved organic carbon (DOC) and chlorophyll- a. 5. Autochthonous primary production of 4.2 t C day,1 in the side-arm was equivalent to about 20% of the allochthonous inputs of 20 t C day,1 (POC and DOC) entering the area at mean flow (1% of the discharge of the main channel). Pelagic photosynthesis was generally high at mean flow (1.3,3.8 g C m,2 day,1), and contributed up to 90% of system productivity. During long stagnant periods at low discharge, the side-arm was controlled by biological processes and a shift from planktonic to benthic activity occurred (benthic primary production of 0.4,14 g C m,2 day,1). 6. The transformation of the organic matter that passes through the side-arm under different hydrological conditions, points to the importance of these subsystems in contributing autochthonous carbon to the food web of the main channel. [source] FOREST-RIVER INTERACTIONS: INFLUENCE ON HYPORHEIC DISSOLVED ORGANIC CARBON CONCENTRATIONS IN A FLOODPLAIN TERRACE,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2002Sandra M. Clinton ABSTRACT: In large floodplain rivers, hyporheic (subsurface) flow-paths transfer nutrients from productive riparian terraces to oligotrophic off-channel habitats. Because dissolved organic carbon (DOC) fuels microbial processes and hyporheic microorganisms represent the first stage of retention and transformation of these nutrients, understanding DOC flux can provide information on the constraints of microbial metabolism in the hyporheic zone of rivers. We monitored hydrology, physicochemical indicators, and dissolved organic carbon (DOC) dynamics during low and high discharge periods in the hyporheic zone of a riparian terrace on the Queets River, Washington, to understand what processes control the supply of carbon to subsurface microbial communities. As discharge increased, terrace hyporheic flowpaths changed from parallel to focused, and the location of surface water inputs to the terrace shifted from the terrace edge to head. Overall, DOC concentrations decreased along hyporheic flowpaths; however, concentrations at points along the flowpaths varied with position along the head gradient and age of the overlying vegetation. We estimated that there is insufficient DOC in adverting surface water to support hyporheic microbial metabolism in this riparian terrace. These trends indicate that there are additional carbon sources to the subsurface water, and we conclude that DOC is leaching from overlying riparian soils within the forest patches. Thus, subsurface DOC concentrations reflect a balance between surface water inputs, metabolic uptake, and allochthonous inputs from forest soils. [source] Soil Phosphorus Fractionation during Forest Development on Landslide Scars in the Luquillo Mountains, Puerto Rico,BIOTROPICA, Issue 1 2002Jacqueline Frizano ABSTRACT Mineral soils from a chronosequence of landslide scars ranging in age from 1 to more than 55 years in a subtropical montane rain forest of eastern Puerto Rico were used to determine the rate at which labile P capital recovers during primary succession. Nine organic and inorganic soil P fractions were measured using the Hedley sequential extraction procedure. Deep soil cores (9 m) from a nearby site were also analyzed to determine the distribution of P fractions below the solum. Litterfall P was measured for two years in the landslide scars to estimate allochthonous litter P inputs, and published precipitation data were used to estimate annual atmospheric inputs of P to the recovering forests. In the upper solum (0,10 cm), organic matter increased with landslide age, as did resin-Pi, labile P (defined here as resin-Pi + HCO3 -Pi + HCO3 -Po) and total organic P. Occluded P decreased with increasing landslide age. No significant changes in P concentrations or pools were observed in 10 to 35 or in 35 to 60 cm depth intervals across the chronosequence. Labile soil P increased to approximately two-thirds of the pre-disturbance levels in the oldest landslide scar (>55 yr). Thus, plants, their associated microflora/fauna, and P inputs from off-site substantially altered the distribution of soil P fractions during forest recovery. Across the chronosequence, the increase in labile P accumulated in soil and biomass appeared to be greater than the estimated allochthonous inputs from litter and precipitation, indicating that as the forest developed, some occluded P may have been released for use by soil biota. Resin-Pi and labile P were correlated with soil organic matter content, suggesting, as in other highly weathered soils, organic matter accumulation and turnover are important in maintaining labile P pools. Primary mineral P (apatite) was scarce, even in deep soil cores. [source] |