Gonad Indices (gonad + index)

Distribution by Scientific Domains


Selected Abstracts


Demographic Characteristics of Lytechinus variegatus (Echinoidea: Echinodermata) from Three Habitats in a North Florida Bay, Gulf of Mexico

MARINE ECOLOGY, Issue 1 2000
Steven D. Beddingfield
Abstract. The population densities, spatial distributions, size frequencies, growth rates, longevity and reproductive activities of sub-populations of the sea urchin Lytechinus variegatus were investigated over a two-year period. Sea urchins were examined in three habitats in Saint Joseph Bay, Florida, which is within the northern limits of their distribution. Densities of sea urchins, which ranged as high as 35 individuals ·,2, fluctuated seasonally at all sites and were higher in seagrass beds comprised of Thalassia testudinum than Syringodium filiforme or on a sand flat. A cold front caused large-scale, catastrophic mortality among adult, and especially juvenile, sea urchins in nearshore habitats of the Bay in the spring of 1993, leading to a dramatic decline in sea urchin densities at the Thalassia seagrass site. The population recovered over 6 months at this site and was attributable to immigration of new adults. Juvenile recruitment displayed both interannual and site-specific variability, with recruitment being highest in seagrass habitats in fall and spring. The most pronounced recruitment event occurred in fall 1993 at the Thalassia site. Spatial distributions of adult individuals ascertained monthly never varied from random in the seagrass beds (T. testudinum and S. filiforme) or during spring, summer or fall months on the sand flat. Nonetheless, aggregations of adult sea urchins were observed on the sand flat in the winter months and were associated with patchy distributions of plant food resources. Juvenile sea urchins (< 25 mm test diameter) exhibited aggregations at all sites and 67 % of all juveniles under 10 mm test diameter (91 of 165 individuals observed) were found under the spine canopies of adults. Measurements of the inducibility of spawning indicated peak gametic maturity in all three sub-populations in spring and summer. Gonad indices varied between habitats and years, but distinct maxima were detected, particularly in spring 1993 and late summer 1994. The mean gonad index of individuals at the Syringodium seagrass site was 2- to 4-fold higher than the other sites in spring 1993 and gonad indices were much higher at all sites in spring of 1993 than 1994. Estimates of growth based on changes in size frequency cohorts coupled with measurements of growth bands on lantern demipyramids indicated that L. variegatus in three habitats of Saint Joseph Bay have similar growth rates and attain a mean test diameter of approximately 35 mm in one year. In contrast to populations within the central biogeographical range of the species, which may attain test diameters up to 90 mm, the largest individuals recorded in Saint Joseph Bay were 60 mm in test diameter, and almost all individuals were no more than 45 mm in test diameter or two years of age. The demographics of L. variegatus in the northern limits of their distribution appear to be strongly influenced by latitudinally driven, low-temperature events and secondarily by local abiotic factors, especially springtime low salinities, which may negatively impact larval development and recruitment. [source]


An experimental assessment on the effects of photoperiod treatments on the somatic and gonadal growth of the juvenile European purple sea urchin Paracentrotus lividus

AQUACULTURE RESEARCH, Issue 7 2010
Eimear McCarron
Abstract Determining the optimum light conditions for sea urchins reared in land-based systems is vital for the future use and assessment of possible commercial systems of sea urchin farming. The effects of two different light regimes, complete darkness and a long day photoperiod of 16 h light:8 h darkness, on the somatic and gonadal growth of the European sea urchin Paracentrotus lividus (19.5,23.0 mm) was investigated using the commercial UrchinPlatterÔ System over a 6-month period (5 March to 5 September). Hatchery-produced P. lividus were transported to the Aquaculture Fisheries Development Centre (AFDC, University College, Cork UCC). Before arrival at the AFDC, sea urchins were reared on a diet of Laminaria digitata. Females were the predominant species of the animal group, displaying a reproductive Stage III (growing stage) where gametogenesis was commencing. Results show that darkness supports higher somatic growth than the photoperiod treatment. Feeding rates were higher for sea urchins reared under darkness with gonadal growth increasing for both experimental treatments. Individuals reared under darkness had a higher per cent change in gonad index from the initial sample taken at the beginning of the experiment. [source]


Long-term exposure of several marine benthic animals to static magnetic fields

BIOELECTROMAGNETICS, Issue 7 2004
R. Bochert
Abstract Electrical currents in underwater sea cables could induce magnetic fields. The sea cables lie on or within the sea bottom and this is the living area for many invertebrate and vertebrate species. North Sea prawn Crangon crangon (Crustacea, Decapoda), round crab Rhithropanopeus harrisii (Crustacea, Brachyura), glacial relict isopod Saduria entomon (Crustacea, Isopoda), blue mussel Mytilus edulis (Bivalvia), and young flounder Plathichthys flesus (Pisces) were exposed to a static magnetic field (MF) of 3.7 mT for several weeks. The results showed no differences in survival between experimental and control animals. Mussels M. edulis were kept under static magnetic field conditions for 3 months during their reproductive period in spring. The determination of gonad index and condition index revealed no significant differences to the control group. Bioelectromagnetics 25:498,502, 2004. © 2004 Wiley-Liss, Inc. [source]


Skipped spawning in female iteroparous fishes

FISH AND FISHERIES, Issue 1 2005
Rick M Rideout
Abstract It is often assumed that iteroparous fishes spawn annually once reaching sexual maturity, but this is not always the case. This paper reviews available information on skipped spawning in female teleost fishes. All instances of non-annual spawning are described as one of three types (retaining, reabsorbing, resting), depending on where in the normal spawning cycle development has been interrupted. Retaining ripe eggs is caused by conditions experienced during the spawning season (fish density, mate availability, pollution), whereas failure to start vitellogenesis (resting) or the breakdown of all oocytes that enter into vitellogenesis (reabsorbing) is caused by factors experienced prior to the spawning season (primarily temperature and poor nutrition). It is speculated that the relative shortage of data on non-annual spawning may be because of difficulties in identifying non-reproductive individuals. In an attempt to rectify this situation, the criteria needed to identify females undergoing the three forms of spawning omission are presented in terms of external appearance of gonads, gonad indices, and histological analysis. The energy saved by not spawning in a poor year may lead to increased survival and the probability of spawning in subsequent years. As the cumulative number of progeny gained by surviving to spawn in multiple subsequent years outweighs the number of progeny lost by not spawning in a given single year, occasional omission of spawning may constitute an adaptive trait in long-lived iteroparous fishes. [source]


Habitats and Characteristics of the Sea Urchins Lytechinus variegatus and Arbacia punctulata (Echinodermata) on the Florida Gulf-Coast Shelf

MARINE ECOLOGY, Issue 1 2003
Sophie K. Hill
Abstract Lytechinus variegatus and Arbacia punctulata have been studied primarily in inshore, shallow-water areas. However, they are abundant in deeper waters on the Florida gulf-coast shelf and seem important components of the benthic communities there. Lytechinus variegatus occurs alone on sand bottoms and A. punctulata occurs alone on rubble bottoms in these deeper waters. The species also co-occur there on ­heterogeneous bottoms, each in a distinct microhabitat with A. punctulata on rubble and L. variegatus on surrounding sand. Characteristics of the sea urchins in these different deeper-water habitat types and at one nearshore site with a heterogeneous rubble-sand bottom were compared. Over the 2-year study, offshore individuals of both species had low gut and gonad indices and the maximum size of individuals did not change. This suggests food limitation and low production. Offshore, A. punctulata had a higher Aristotle's lantern index and lower gut and gonad indices in populations where it ­co-occurred with L. variegatus compared to populations where it occurred alone. The ­Aristotle's lantern index of L. variegatus did not differ among the offshore sites. Neither species seemed food limited at the nearshore site. Although productivity is lower at the offshore sites, both species extend their distribution and reproduction potential by existing there. [source]


Demographic Characteristics of Lytechinus variegatus (Echinoidea: Echinodermata) from Three Habitats in a North Florida Bay, Gulf of Mexico

MARINE ECOLOGY, Issue 1 2000
Steven D. Beddingfield
Abstract. The population densities, spatial distributions, size frequencies, growth rates, longevity and reproductive activities of sub-populations of the sea urchin Lytechinus variegatus were investigated over a two-year period. Sea urchins were examined in three habitats in Saint Joseph Bay, Florida, which is within the northern limits of their distribution. Densities of sea urchins, which ranged as high as 35 individuals ·,2, fluctuated seasonally at all sites and were higher in seagrass beds comprised of Thalassia testudinum than Syringodium filiforme or on a sand flat. A cold front caused large-scale, catastrophic mortality among adult, and especially juvenile, sea urchins in nearshore habitats of the Bay in the spring of 1993, leading to a dramatic decline in sea urchin densities at the Thalassia seagrass site. The population recovered over 6 months at this site and was attributable to immigration of new adults. Juvenile recruitment displayed both interannual and site-specific variability, with recruitment being highest in seagrass habitats in fall and spring. The most pronounced recruitment event occurred in fall 1993 at the Thalassia site. Spatial distributions of adult individuals ascertained monthly never varied from random in the seagrass beds (T. testudinum and S. filiforme) or during spring, summer or fall months on the sand flat. Nonetheless, aggregations of adult sea urchins were observed on the sand flat in the winter months and were associated with patchy distributions of plant food resources. Juvenile sea urchins (< 25 mm test diameter) exhibited aggregations at all sites and 67 % of all juveniles under 10 mm test diameter (91 of 165 individuals observed) were found under the spine canopies of adults. Measurements of the inducibility of spawning indicated peak gametic maturity in all three sub-populations in spring and summer. Gonad indices varied between habitats and years, but distinct maxima were detected, particularly in spring 1993 and late summer 1994. The mean gonad index of individuals at the Syringodium seagrass site was 2- to 4-fold higher than the other sites in spring 1993 and gonad indices were much higher at all sites in spring of 1993 than 1994. Estimates of growth based on changes in size frequency cohorts coupled with measurements of growth bands on lantern demipyramids indicated that L. variegatus in three habitats of Saint Joseph Bay have similar growth rates and attain a mean test diameter of approximately 35 mm in one year. In contrast to populations within the central biogeographical range of the species, which may attain test diameters up to 90 mm, the largest individuals recorded in Saint Joseph Bay were 60 mm in test diameter, and almost all individuals were no more than 45 mm in test diameter or two years of age. The demographics of L. variegatus in the northern limits of their distribution appear to be strongly influenced by latitudinally driven, low-temperature events and secondarily by local abiotic factors, especially springtime low salinities, which may negatively impact larval development and recruitment. [source]