Glycogen Stores (glycogen + store)

Distribution by Scientific Domains


Selected Abstracts


Biochemical responses of matrinxăBrycon cephalus (Günther, 1869) after sustained swimming

AQUACULTURE RESEARCH, Issue 11 2006
Araceli Hackbarth
Abstract Juvenile matrinxă, Brycon cephalus, were submitted to sustained swimming for 72 days at 1.0 body length s,1. Exercised fish (EF) grew more than non-EF and their feed conversion ratio (FCR) improved; haematological responses demonstrated a decrease in haemoglobin and mean cell haemoglobin contents and increase in the mean cell volume. In the plasma, sodium, ammonia and amino acid concentrations increased; plasma triglycerides decreased while free fatty acids increased. Liver glucose, free amino acids, ammonia, the rate protein per fish weight and total lipid content increased, while the glycogen per fish ratio declined. Glutamate dehydrogenase (GDH) activity increased while pyruvate kinase (PK) and lactate dehydrogenase (LDH) decreased. White muscle glucose, lactate, the glycogen per fish-weight ratio and total lipid content exhibited a decrease in their values; ammonia, free amino acids and the protein per fish-weight ratio increased. GDH and PK decreased their activities. In the red muscle glycogen store, the glycogen per fish-weight ratio and glucose were reduced. Juvenile matrinxăs, under sustained swimming, were physiologically and biochemically adapted to exercise as indicated by improved blood flow, transport and oxygen uptake, FCR, amino acid and protein incorporation and growth. Continuous exercise is a good practice for B. cephalus cultivation. [source]


AMP-activated protein kinase , a sensor of glycogen as well as AMP and ATP?

ACTA PHYSIOLOGICA, Issue 1 2009
A. McBride
Abstract The classical role of the AMP-activated protein kinase (AMPK) is to act as a sensor of the immediate availability of cellular energy, by monitoring the concentrations of AMP and ATP. However, the , subunits of AMPK contain a glycogen-binding domain, and in this review we develop the hypothesis that this is a regulatory domain that allows AMPK to act as a sensor of the status of cellular reserves of energy in the form of glycogen. We argue that the pool of AMPK that is bound to the glycogen particle is in an active state when glycogen particles are fully synthesized, causing phosphorylation of glycogen synthase at site 2 and providing a feedback inhibition of further extension of the outer chains of glycogen. However, when glycogen becomes depleted, the glycogen-bound pool of AMPK becomes inhibited due to binding to ,1,6-linked branch points exposed by the action of phosphorylase and/or debranching enzyme. This allows dephosphorylation of site 2 on glycogen synthase by the glycogen-bound form of protein phosphatase-1, promoting rapid resynthesis of glycogen and replenishment of glycogen stores. This is an extension of the classical role of AMPK as a ,guardian of cellular energy', in which it ensures that cellular energy reserves are adequate for medium-term requirements. The literature concerning AMPK, glycogen structure and glycogen-binding proteins that led us to this concept is reviewed. [source]


Diabetes mellitus and alcohol

DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 4 2004
Albert van de Wiel
Abstract Alcohol influences glucose metabolism in several ways in diabetic patients as well as in non-diabetic patients. Since alcohol inhibits both gluconeogenesis and glycogenolysis, its acute intake without food may provoke hypoglycaemia, especially in cases of depleted glycogen stores and in combination with sulphonylurea. Consumed with a meal including carbohydrates, it is the preferred fuel, which may initially lead to somewhat higher blood glucose levels and hence an insulin response in type 2 diabetic patients. Depending on the nature of the carbohydrates in the meal, this may be followed by reactive hypoglycaemia. Moderate consumption of alcohol is associated with a reduced risk of atherosclerotic disorders. Diabetic patients benefit from this favourable effect as much as non-diabetic patients. Apart from effects on lipid metabolism, haemostatic balance and blood pressure, alcohol improves insulin sensitivity. This improvement of insulin sensitivity may also be responsible for the lower incidence of type 2 diabetes mellitus reported to be associated with light-to-moderate drinking. In case of moderate and sensible use, risks of disturbances in glycaemic control, weight and blood pressure are limited. Excessive intake of alcohol, however, may not only cause loss of metabolic control, but also annihilate the favourable effects on the cardiovascular system. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen

EXPERIMENTAL PHYSIOLOGY, Issue 2 2010
Wee Kian Yeo
We have previously demonstrated that well-trained subjects who completed a 3 week training programme in which selected high-intensity interval training (HIT) sessions were commenced with low muscle glycogen content increased the maximal activities of several oxidative enzymes that promote endurance adaptations to a greater extent than subjects who began all training sessions with normal glycogen levels. The aim of the present study was to investigate acute skeletal muscle signalling responses to a single bout of HIT commenced with low or normal muscle glycogen stores in an attempt to elucidate potential mechanism(s) that might underlie our previous observations. Six endurance-trained cyclists/triathletes performed a 100 min ride at ,70% peak O2 uptake (AT) on day 1 and HIT (8 × 5 min work bouts at maximal self-selected effort with 1 min rest) 24 h later (HIGH). Another six subjects, matched for fitness and training history, performed AT on day 1 then 1,2 h later, HIT (LOW). Muscle biopsies were taken before and after HIT. Muscle glycogen concentration was higher in HIGH versus LOW before the HIT (390 ± 28 versus 256 ± 67 ,mol (g dry wt),1). After HIT, glycogen levels were reduced in both groups (P < 0.05) but HIGH was elevated compared with LOW (229 ± 29 versus 124 ± 41 ,mol (g dry wt),1; P < 0.05). Phosphorylation of 5,AMP-activated protein kinase (AMPK) increased after HIT, but the magnitude of increase was greater in LOW (P < 0.05). Despite the augmented AMPK response in LOW after HIT, selected downstream AMPK substrates were similar between groups. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was unchanged for both groups before and after the HIT training sessions. We conclude that despite a greater activation AMPK phosphorylation when HIT was commenced with low compared with normal muscle glycogen availability, the localization and phosphorylation state of selected downstream targets of AMPK were similar in response to the two interventions. [source]


Physiological Ecology of Aquatic Overwintering in Ranid Frogs

BIOLOGICAL REVIEWS, Issue 2 2008
Glenn J. Tattersall
Abstract In cold-temperate climates, overwintering aquatic ranid frogs must survive prolonged periods of low temperature, often accompanied by low levels of dissolved oxygen. They must do so with the energy stores acquired prior to the onset of winter. Overwintering mortality is a significant factor in their life history, occasionally reaching 100% due to freezing and/or anoxia. Many species of northern ranid frogs overwinter in the tadpole stage, which increases survival during hypoxic episodes relative to adults, as well as allowing for larger sizes at metamorphosis. At temperatures below 5 °C, submerged ranid frogs are capable of acquiring adequate oxygen via cutaneous gas exchange over a wide range of ambient oxygen partial pressures (PO2), and possess numerous physiological and behavioural mechanisms that allow them to maintain normal rates of oxygen uptake across the skin at a relatively low PO2. At levels of oxygen near and below the critical PO2 that allows for aerobic metabolism, frogs must adopt biochemical mechanisms that act to minimise oxygen utilisation and assist in maintaining an aerobic state to survive overwintering. These mechanisms include alterations in mitochondrial metabolism and affinity, changes in membrane permeability, alterations in water balance, and reduction in cellular electrochemical gradients, all of which lead to an overall reduction in whole-animal metabolism. Winter energetic requirements are fueled by the energy stores in liver, muscle, and fat depots, which are likely to be sufficient when the water is cold and well oxygenated. However, under hypoxic conditions fat stores cannot be utilised efficiently and glycogen stores are used up rapidly due to recruitment of anaerobiosis. Since ranid frogs have minimal tolerance to anoxia, it is untenable to suggest that they spend a significant portion of the winter buried in anoxic mud, but instead utilise a suite of behavioural and physiological mechanisms geared to optimal survival in cold, hypoxic conditions. [source]