Home About us Contact | |||
Glycidyl Methacrylate (glycidyl + methacrylate)
Selected AbstractsAtom Transfer Radical Polymerization of Glycidyl Methacrylate: A Functional MonomerMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 16 2004Pedro Francisco Cañamero Abstract Summary: A detailed investigation of the polymerization of glycidyl methacrylate (GMA), an epoxy-functional monomer, by atom transfer radical polymerization (ATRP) was performed. Homopolymers were prepared at relatively low temperatures using ethyl 2-bromoisobutyrate (EBrIB) as the initiator and copper halide (CuX) with N,N,N,,N,,N,-pentamethyldiethylenetriamine (PMDETA) as the catalyst system. The high polymerization rate in the bulk did not permit polymerization control. However, homopolymerization in solution enabled us to explore the effects of different experimental parameters, such as temperature, solvent (toluene vs. diphenyl ether) and initiator concentration, on the controllability of the ATRP process. SEC analysis of the homopolymers synthesized confirmed the importance of solvent character on molecular weight control, the lowest polydispersity indices () and the highest efficiencies being found when the polymerizations were performed in diphenyl ether in combination with a mixed halide technique. A novel poly(glycidyl methacrylate)- block -poly(butyl acrylate) (PGMA- b -PBA) diblock copolymer was prepared through ATRP using PGMA-Cl as a macro-initiator. This chain growth experiment demonstrated a good living character under the conditions employed, while simultaneously indicating a facile synthetic route for this type of functional block copolymer. In addition, the isotacticity parameter for the PGMAs obtained was estimated using 1H NMR analysis which gave a value of ,GMA,=,0.26 in agreement with that estimated in conventional radical polymerization. SEC chromatograms of PGMA-Cl macroinitiator and PGMA- b -PBA diblock copolymer. [source] Functionalization of LDPE by Melt Grafting with Glycidyl Methacrylate and Reactive Blending with Polyamide-6MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 8 2003Qian Wei Abstract Low-density polyethylene (LDPE) was functionalized by melt radical grafting with glycidyl methacrylate (GMA) and employed for reactive blending with polyamide-6 (PA6). The effect of the reaction procedure on the grafting degree of LDPE- g -GMA samples (0.5,12.5 wt.-% GMA) was analyzed as a function of the concentration of GMA monomer, radical initiator (BTP), and addition of styrene as co-monomer. Optimized grafting conditions were obtained when the amount of the monomer is below 10 wt.-% and that of peroxide in the range 0.2,0.4 wt.-%. Binary blends of PA6 with LDPE- g -GMA (3.5 wt.-% GMA) and with LDPE at various compositions (80/20, 67/33, 50/50 wt.-%) were prepared in an internal mixer and their properties were evaluated by torque, SEM and DSC analyses. Morphological examination by SEM showed a large improvement of phase dispersion and interfacial adhesion in PA6/LDPE- g -GMA blends as compared with PA6/LDPE blends. The average diameter of dispersed polyolefin particles was about 0.4 ,m for LDPE- g -GMA contents <,50 wt.-%. A marked increase of melt viscosity was observed for the compatibilized blends depending on the concentration of grafted polyolefin, and it was accounted for by the reaction between the epoxy groups of GMA and the carboxyl/amine end-groups of PA6. The variation of torque was thus related to the molar ratio of reactive group concentration. The analysis of crystallization and melting behavior pointed out marked differences in the phase structure of the blends due to the presence of the functionalized polyolefin. Finally, the in situ formation of a graft copolymer between LDPE- g -GMA and PA6 was investigated by means of a selective dissolution method (Molau test) and by FT-IR and DSC analyses. SEM micrograph of fracture surface of PA6/LDPE- g -GMA 50/50 blend. [source] Affinity monolith preconcentrators for polymer microchip capillary electrophoresisELECTROPHORESIS, Issue 16 2008Weichun Yang Abstract Developments in biology are increasing demands for rapid, inexpensive, and sensitive biomolecular analysis. In this study, polymer microdevices with monolithic columns and electrophoretic channels were used for biological separations. Glycidyl methacrylate- co -ethylene dimethacrylate monolithic columns were formed within poly(methyl methacrylate) microchannels by in situ photopolymerization. Flow experiments in these columns demonstrated retention and then elution of amino acids under conditions optimized for sample preconcentration. To enhance analyte selectivity, antibodies were immobilized on monoliths, and subsequent lysozyme treatment blocked nonspecific adsorption. The enrichment capability and selectivity of these affinity monoliths were evaluated by purifying fluorescently tagged amino acids from a mixture containing green fluorescent protein (GFP). Twenty-fold enrichment and 91% recovery were achieved for the labeled amino acids, with a >25,000-fold reduction in GFP concentration, as indicated by microchip electrophoresis analysis. These devices should provide a simple, inexpensive, and effective platform for trace analysis in complex biological samples. [source] Polyamide 6/maleated ethylene,propylene,diene rubber/organoclay composites with or without glycidyl methacrylate as a compatibilizerJOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2008Lingyan Zhang Abstract Polyamide 6 (PA6)/maleated ethylene,propylene,diene rubber (EPDM- g -MA)/organoclay (OMMT) composites were melt-compounded through two blending sequences. Glycidyl methacrylate (GMA) was used as a compatibilizer for the ternary composites. The composite prepared through via the premixing of PA6 with OMMT and then further melt blending with EPDM- g -MA exhibited higher impact strength than the composite prepared through the simultaneous blending of all the components. However, satisfactorily balanced mechanical properties could be achieved by the addition of GMA through a one-step blending sequence. The addition of GMA improved the compatibility between PA6 and EPDM- g -MA, and this was due to the reactions between PA6, EPDM- g -MA, and GMA, as proved by Fourier transform infrared analysis and solubility (Molau) testing. In addition, OMMT acted as a compatibilizer for PA6/EPDM- g -MA blends at low contents, but it weakened the interfacial interactions between PA6 and EPDM- g -MA at high contents. Both OMMT and GMA retarded the crystallization of PA6. The complex viscosity, storage modulus, and loss modulus of the composites were obviously affected by the addition of OMMT and GMA. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] New straightforward route for the synthesis of some 1-oxa-2-silacyclopentane derivativesJOURNAL OF HETEROCYCLIC CHEMISTRY, Issue 2 2008Kazem D. Safa Tris(dimethylsilyl)methyl lithium, (HSiMe2)3CLi, reacts with allyl, phenyl, benzyl, n -propyl and n -butyl glycidyl ethers in THF at -5 °C to give 1-oxa-2-silacyclopentane derivatives. It seems that ring closure is facilitated by conversion of the SiH bond into an SiO bond. Glycidyl methacrylate (GM) random copolymers with 4-methyl- and 4-methoxy styrene, synthesized by solution free radical polymerization at 70 (±1) °C with ,,,-azobis(isobutyronitrile) (AIBN) as initiator, contained pendant epoxide functions. Treatment of these with (HSiMe2)3CLi did not lead to intramolecular nucleophilic attack as found for simple epoxides. [source] Contact allergy to epoxy (meth)acrylatesCONTACT DERMATITIS, Issue 1 2009Kristiina Aalto-Korte Background: Contact allergy to epoxy (meth)acrylates, 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]propane (bis-GMA), 2,2-bis[4-(2-hydroxy-3-acryloxypropoxy)phenyl]-propane (bis-GA), 2,2-bis[4-(methacryl-oxyethoxy)phenyl] propane (bis-EMA), 2,2-bis[4-(methacryloxy)phenyl]-propane (bis-MA), and glycidyl methacrylate (GMA) is often manifested together with contact allergy to diglycidyl ether of bisphenol A (DGEBA) epoxy resin. Objective: To analyse patterns of concomitant allergic reactions to the five epoxy (meth)acrylates in relation to exposure. Methods: We reviewed the 1994,2008 patch test files at the Finnish Institute of Occupational Health (FIOH) for reactions to the five epoxy (meth)acrylates, and examined the patients' medical records for exposure. Results: Twenty-four patients had an allergic reaction to at least one of the studied epoxy (meth)acrylates, but specific exposure was found only in five patients: two bis-GMA allergies from dental products, two bis-GA allergies from UV-curable printing inks, and one bis-GA allergy from an anaerobic glue. Only 25% of the patients were negative to DGEBA epoxy resin. Conclusions: The great majority of allergic patch test reactions to bis-GMA, bis-GA, GMA and bis-EMA were not associated with specific exposure, and cross-allergy to DGEBA epoxy resin remained a probable explanation. However, independent reactions to bis-GA indicated specific exposure. Anaerobic sealants may induce sensitization not only to aliphatic (meth)acrylates but also to aromatic bis-GA. [source] Chemical burn caused by glycidyl methacrylateCONTACT DERMATITIS, Issue 5 2008Ayako Shimizu No abstract is available for this article. [source] Macrocyclic polyamine-modified poly(glycidyl methacrylate- co -ethylene dimethacrylate) monolith for capillary electrochromatographyELECTROPHORESIS, Issue 11 2008Yun Tian Abstract 1,4,10,13,16-Pentaazatricycloheneicosane-9,17-dione (macrocyclic polyamine)-modified polymer-based monolithic column for CEC was prepared by ring opening reaction of epoxide groups from poly(glycidyl methacrylate- co -ethylene dimethacrylate) (GMA- co -EDMA) monolith with macrocyclic polyamine. Conditions such as reaction time and concentration of macrocyclic polyamine for the modification reaction were optimized to generate substantial EOF and enough chromatographic interactions. Anodic EOF was observed in the pH range of 2.0,8.0 studied due to the protonation of macrcyclic polyamine at the surface of the monolith. Morphology of the monolithic column was examined by SEM and the incorporation of macrocyclic polyamine to the poly(GMA- co -EDMA) monolith was characterized by infrared (IR) spectra. Successful separation of inorganic anions, isomeric benzenediols, and benzoic acid derivatives on the monolithic column was achieved for CEC. In addition to hydrophobic interaction, hydrogen bonding and electrostatic interaction played a significant role in the separation process. [source] Capillary electrochromatography with zwitterionic stationary phase on the lysine-bonded poly(glycidyl methacrylate- co -ethylene dimethacrylate) monolithic capillary columnELECTROPHORESIS, Issue 12 2006Xiaoli Dong Abstract A polymer-based neutral monolithic capillary column was prepared by radical polymerization of glycidyl methacrylate and ethylene dimethacrylate in a 100,,m id fused-silica capillary, and the prepared monolithic column was subsequently modified based on a ring opening reaction of epoxide groups with 1,M,lysine in solution (pH,8.0) at 75°C for 10,h to produce a lysine chemically bonded stationary phases in capillary column. The ring opening reaction conditions were optimized so that the column could generate substantial EOF. Due to the zwitterionic functional groups of the lysine covalently bonded on the polymer monolithic rod, the prepared column can generate cathodic and anodic EOF by varying the pH values of running buffer during CEC separation. EOF reached the maximum of ,2.0×10,8,m2v,1s,1 and 2.6×10,8,m2v,1s,1 with pH of the running buffer of 2.25 and 10, respectively. As a consequence, neutral compounds, ionic solutes such as phenols, aromatic acids, anilines, and basic pharmaceuticals were all successfully separated on the column by CEC. Hydrophobic interaction is responsible for separation of neutral analytes. In addition, the electrostatic and hydrophobic interaction and the electrophoretic migration play a significant role in separation of the ionic or ionizable analytes. [source] On-line concentration of peptides and proteins with the hyphenation of polymer monolithic immobilized metal affinity chromatography and capillary electrophoresisELECTROPHORESIS, Issue 11 2005Lingyi Zhang Abstract An iminodiacetic acid (IDA)-type adsorbent is prepared at the one end of a capillary by covalently bonding IDA to the monolithic rods of macroporous poly(glycidyl methacrylate,co -ethylene dimethacrylate). Cu(II) is later introduced to the support via the interaction with IDA. By this means, polymer monolithic immobilized metal affinity chromatography (IMAC) materials are prepared. With such a column, IMAC for on-line concentration and capillary electrophoresis (CE) for the subsequent analysis are hyphenated for the analysis of peptides and proteins. The reproducibility of such a column has been proved good with relative standard deviations (RSDs) of dead time of less than 5% for injection-to-injection and 12% for column-to-column (n = 3). Through application on the analysis of standard peptides and real protein samples, such a technique has shown promising in proteome study. [source] Surface grafting of glycidyl methacrylate on silica gel and polyethylene beadsELECTROPHORESIS, Issue 18 2003Seong-Ho Choi Abstract Surface grafting of glycidyl methacrylate (GMA) on silica gel and a polyethylene bead was performed by radical polymerization and radiation-induced polymerization, respectively, in order to improve softness. Subsequently, diethylene triamine (DETA), triethylene tetraamine (TETA), and iminodiacetic acid (IDA) were introduced to the grafted GMA for use as affinity columns. The efficiency of the affinity column was investigated by use of bovine serum albumin (BSA) and hemoglobin (Hb) as model proteins. The affinity degree of BSA was higher than Hb for the DETA and TETA column, whereas the affinity degree of Hb was higher than BSA for the IDA column supported by silica gel. The affinity degree of BSA was higher than Hb for the DETA and TTA column supported by polyethylene (PE) beads. [source] Red,Yellow Fluorescence Patterning of a Polymer Film Containing Phthalimido Carbamate GroupsADVANCED FUNCTIONAL MATERIALS, Issue 17 2007H. Chae Abstract Bicolor fluorescent micro-patterns in the polymer film are prepared through the use of a new group of photobase generator containing phthalimido carbamate groups. The photobase generation from phthalimide carbamates is studied by examining the changes in pH, fluorescence intensity, and photo-crosslinking of poly(glycidyl methacrylate). The product analysis of a model compound indicates that amine groups are produced from the photolytic cleavage of the C,N bond of the phthalimide carbamate groups. A copolymer containing phthalimide carbamate groups is applied to a bicolor fluorescent imaging material. Red-yellow fluorescent micropatterns are obtained by treating the copolymer film, which is irradiated with 254 nm UV light through a photomask, with fluorescamine and rhodamine, consecutively. Various colored fluorescent micropatterns , green, red, or red-yellow, are obtained on a single polymer film by varying the excitation wavelength. [source] Reactive grafting of glycidyl methacrylate onto polypropyleneJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2010Emma-Louise Burton Abstract This work explored the melt-phase grafting of glycidyl methacrylate (GMA) onto polypropylene on a closely intermeshing corotating twin-screw extruder (16-mm screws, 40 : 1 length/diameter ratio). The modification of the base polypropylene to produce GMA-grafted polypropylene was achieved via peroxide-induced hydrogen abstraction from the polypropylene followed by the grafting of the GMA monomer or by the grafting of styrene followed by copolymerization with the GMA. In this study, both the position and order of the reactant addition were investigated as a route to improving graft yields and reducing side reactions (degradation). For the peroxide,GMA system, adding GMA to the melt before the peroxide resulted in significant improvements in the graft levels because of the improved dispersion of GMA in the melt. The addition of a comonomer (styrene) was explored as a second route to improving the graft yield. Although the addition of the comonomer led to a considerable rise in the level of grafted GMA, altering the order of the reactant addition was not found to contribute to an increase in the grafted GMA levels. However, variable levels of grafted styrene were achieved, and this may play an important role in the development of grafted polymers to suit specific needs. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] A study of the mechanisms of divalent copper binding to a modified cellulose adsorbentJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2010David William O'Connell Abstract A modified cellulose material was prepared by grafting glycidyl methacrylate to cellulose (Cell- g -GMA) with subsequent functionalization with imidazole (Cell- g -GMA-imidazole). This latter compound was used in the adsorption of copper from aqueous solution. The mechanism of Cu(II) binding onto the cell- g -GMA-imidazole was investigated at the molecular level using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), x-ray photoelectron spectroscopy (XPS), energy dispersive x-ray analysis (EDX) and X-ray diffraction (XRD). FTIR and Raman spectroscopy provided an insight into the extent to which perturbation of the imidazole ring occurred following adsorption of the metal while XPS spectra indicated the binding of Cu(II) ions to nitrogen atoms by the appearance of additional binding energy peaks for nitrogen on the cellulose- g -GMA-imidazole sample post adsorption. The EDX technique provided clear evidence of the physical presence of both the copper and sulfate on the cellulose- g -GMA-imidazole material post adsorption. XRD analysis further confirmed the presence of a copper species in the adsorbent material as copper sulfate hydroxide (Cu3(OH)4SO4 - antlerite). The XRD studies further suggest that the overall extent of Cu(II) adsorption is not alone a combination of true metal chelation as suggested by FTIR, Raman and XPS, but also a function of surface precipitation of the polynuclear copper species. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] Adsorption of Hg2+ on a novel chelating fiber prepared by preirradiation grafting and aminationJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2009Ying Yang Abstract A novel chelating fiber was prepared by the irradiation-induced grafting copolymerization of glycidyl methacrylate on polypropylene fiber and consequent amination with diethylenetriamine. The effects of the reaction conditions, such as reaction time, temperature, and monomer concentration, on the degree of grafting were investigated. The optimal conditions for grafting were found to be 3 h, 100°C, and a 50% (v/v) glycidyl methacrylate concentration in tetrahydrofuran solution. This fiber showed good adsorption performance at different concentrations of Hg2+, in particular for trace Hg2+. Under the adsorption conditions of pH = 4, initial concentration = 1000 mg/L, and time = 20 h, the adsorption capacity of the chelating fiber for Hg2+ reached 785.28 mg/g. It completely adsorbed the Hg2+ ions in solution within a short contact time, showing a very high adsorption rate for Hg2+. Furthermore, the chelating fiber also had a high selectivity for mercury, whereas Cu2+ coexisted in different concentrations. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] Poly(butylene terephthalate)/clay nanocomposite compatibilized with poly(ethylene- co -glycidyl methacrylate).JOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2008Abstract Poly(butylene terephthalate) (PBT)/clay nanocomposite was prepared by blending PBT and commercial modified montmorillonite clays via a extruder by using poly(ethylene- co -glycidyl methacrylate) (PEGMA) as a compatibilizer (PBT/PEGMA/Clay). PEGMA and clay were also blended with PBT to prepare PBT/PEGMA and PBT/Clay, respectively. The morphology was investigated by wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The clays were aggregated together and phase separation was observed in PBT/Clay. The clays were exfoliated in PBT/PEGMA/Clay. The equilibrium melting temperature was estimated by linear and nonlinear Hoffman-Weeks relation. The influence of the PEGMA and clay on the PBT crystallizable ability was also investigated by Avrami model and undercooling (difference between crystallization and equilibrium melting temperature). Hoffman-Lauritzen relation was used to estimate chain fold surface free energy. The exfoliated silicates cause a large number nucleus center to enhance the crystallization in PBT/PEGMA/Clay. The presence of PEGMA can react with the PBT and an increase in viscosity would reduce molecular mobility and crystallization in PBT/PEGMA. The aggregated clays have a confinement effect on the segmental motion of PBT and hinder the crystallization in PBT/Clay. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Thermal degradation behavior of poly(vinyl chloride) in the presence of poly(glycidyl methacrylate)JOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2008Magdy W. Sabaa Abstract The thermal degradation behavior of poly(vinyl chloride) (PVC) in presence of poly(glycidyl methacrylate) (PGMA) has been studied using continuous potentiometric determination of the evolved HCl gas from the degradation process from one hand and by evaluating the extent of discoloration of the degraded samples from the other. The efficiency of blending PGMA with dibasic lead carbonate (DBLC) conventional thermal stabilizer has also been investigated. A probable radical mechanism for the effect of PGMA on the thermal stabilization of PVC has been suggested based on data reported by FTIR and elemental analyses. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Polyamide 6/maleated ethylene,propylene,diene rubber/organoclay composites with or without glycidyl methacrylate as a compatibilizerJOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2008Lingyan Zhang Abstract Polyamide 6 (PA6)/maleated ethylene,propylene,diene rubber (EPDM- g -MA)/organoclay (OMMT) composites were melt-compounded through two blending sequences. Glycidyl methacrylate (GMA) was used as a compatibilizer for the ternary composites. The composite prepared through via the premixing of PA6 with OMMT and then further melt blending with EPDM- g -MA exhibited higher impact strength than the composite prepared through the simultaneous blending of all the components. However, satisfactorily balanced mechanical properties could be achieved by the addition of GMA through a one-step blending sequence. The addition of GMA improved the compatibility between PA6 and EPDM- g -MA, and this was due to the reactions between PA6, EPDM- g -MA, and GMA, as proved by Fourier transform infrared analysis and solubility (Molau) testing. In addition, OMMT acted as a compatibilizer for PA6/EPDM- g -MA blends at low contents, but it weakened the interfacial interactions between PA6 and EPDM- g -MA at high contents. Both OMMT and GMA retarded the crystallization of PA6. The complex viscosity, storage modulus, and loss modulus of the composites were obviously affected by the addition of OMMT and GMA. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Preparation and applicability of functionalized polyethylene with an ethylene/1,7-octadiene copolymerJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008Eun-Soo ParkArticle first published online: 3 JUN 200 Abstract The copolymerization of ethylene and 1,7-octadiene was carried out to synthesize polyethylene with unreacted vinyl groups. The prepared copolymer [poly (ethylene- co -1,7-octadiene) (PEOD)] was epoxidized with peracetic acid, m -chloroperbenzoic acid, or formic acid/H2O2. Of these, peracetic acid gave the best results. Epoxidized PEOD was subjected to a reaction with 2-mercaptobenzimidazole and poly(L -lactic acid). The bromination of PEOD was also performed in the presence of a Br2/HBr solution at room temperature. The brominated poly(ethylene- co -1,7-octadiene) (PEOD-Br) was used as a macroinitiator for atom transfer radical polymerization. The polymerization of styrene, butyl methacrylate, and glycidyl methacrylate was performed in bulk or solution at 120°C with a PEOD-Br/CuBr/2,2,-dipyridyl initiator system. The thermal properties of the graft copolymers and the efficiency of the graft polymerization were investigated. These graft copolymers have potential applications as interfacial modifiers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Grafting emulsion polymerization of glycidyl methacrylate onto leather by chemical initiation systemsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008K. A. Shaffei Abstract The kinetics of the grafting polymerization of glycidyl methacrylate (GMA) onto leather were studied with chemical initiation systems. The results showed that the rate of grafting of GMA onto leather was dependent on different rates in the chemical initiation systems; for ammonium persulfate (AmPS)/acetone sodium bisulfite (ASBS), potassium persulfate (PPS)/ASBS, and sodium persulfate (SPS)/ASBS, the powers were 1.06, 0.48, and 0.43 and 0.63, 0.46, and 0.43, respectively, with respect to the concentration of the emulsifier sodium dodecyl sulfate, whereas the powers were 1.41, 0.70, and 0.81, respectively, with respect to the monomer concentration. The apparent activation energy was calculated for each initiation system and was found to be 180.8, 361.63, and 542.45 kcal for the AmPS/ASBS, PPS/ASBS, and SPS/ASBS systems, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Synthesis, characterization, and cure reaction of methacrylate-based multifunctional monomers for dental compositesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2007Mousa Ghaemy Abstract The synthesis of 2,2-bis[(4-(2-hydroxy-3-methacryloxyethoxy)phenyl]propane (BHEP) and (1-methacryloxy-3-ethoxymethacryloxy-2-hydroxy)propane (MEHP) for use as the monomer phase in dental composites are reported. The monomers were prepared by the reaction of 2-hydroxyethyl methacrylate (HEMA) with diglycidyl-ether of bisphenol A (DGEBA) and with glycidyl methacrylate (GMA), respectively. The progress of the reaction was followed by measuring the disappearance of the epoxide group peak using FTIR and the structure of the monomers was characterized by 1H-NMR. BHEP and MEHP have lower viscosity because of the presence of long aliphatic spacer on both sides of the aromatic ring in BHEP and the absence of aromatic rings and the presence of only one hydroxyl group in each molecule of MEHP. Thermal curing of the monomers was conducted in a DSC using benzoyl peroxide as an initiator. Photopolymerization of the monomers was also conducted with the visible light using camphorquinone and N,N -dimethylaminoethyl methacrylate as the photoinitiating system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 [source] A fast response resistive thin film humidity sensor based on poly(4-vinylpyridine) and poly(glycidyl methacrylate)JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2007Y. S. Chen Abstract Humidity sensitive films with the structure of an interpenetrating network were prepared through simultaneous quaternization and crosslinking of poly(4-vinylpyridine) and poly(glycidyl methacrylate) with 1,4-dibromobutane and diethyltriamine, respectively, on the interdigital electrodes. The effect of the composition of humidity sensitive film and the concentration of dip-coating solution on the humidity sensitive properties of the sensors have been investigated. The humidity sensors so prepared exhibit little hysteresis (<1% RH [relative humidity]) and the response time for adsorption and desorption between 80% RH and 54% RH is about 21 s and 3 s, respectively, suggesting a very fast response. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 [source] Effect of ethylene glycidyl methacrylate compatibilizer on the structure and mechanical properties of clay nanocomposites modified with ethylene vinyl acetate copolymerJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2007B. R. Guduri Abstract The structure and mechanical properties of clay modified with ethylene vinyl acetate copolymer in the presence of ethylene glycidyl methacrylate (EGMA) were investigated as a function of compatibilizer and clay contents. The structure and properties were determined by X-ray diffraction, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis (TGA). The presence of EGMA caused strong exfoliation of the clay in the polymer matrix, although at higher clay contents, some clay layers still existed. The more effective exfoliation, however, did not seem to substantially influence the tensile properties of the nanocomposites because the EGMA itself had a much stronger influence, which overshadowed any possible influence that the EGMA,clay interaction may have had on these properties. The thermal stability of the nanocomposites (as studied by TGA) improved in the presence of EGMA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 4095,4101, 2007 [source] Chitosan-grafted poly(hydroxyethyl methacrylate- co -glycidyl methacrylate) membranes for reversible enzyme immobilizationJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2007M. Yakup Ar Abstract Epoxy group-containing poly(hydroxyethyl methacrylate/glycidyl methacrylate), p(HEMA/GMA), membrane was prepared by UV initiated photopolymerization. The membrane was grafted with chitosan (CH) and some of them were chelated with Fe(III) ions. The CH grafted, p(HEMA/GMA), and Fe(III) ions incorporated p(HEMA/GMA)-CH-Fe(III) membranes were used for glucose oxidase (GOD) immobilization via adsorption. The maximum enzyme immobilization capacity of the p(HEMA/GMA)-CH and p(HEMA/GMA)-CH-Fe(III) membranes were 0.89 and 1.36 mg/mL, respectively. The optimal pH value for the immobilized GOD preparations is found to have shifted 0.5 units to more acidic pH 5.0. Optimum temperature for both immobilized preparations was 10°C higher than that of the free enzyme and was significantly broader at higher temperatures. The apparent Km values were found to be 6.9 and 5.8 mM for the adsorbed GOD on p(HEMA/GMA)-CH and p(HEMA/GMA)-CH-Fe(III) membranes, respectively. In addition, all the membranes surfaces were characterized by contact angle measurements. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3084,3093, 2007 [source] Biporous polymeric beads fabricated by double emulsification for high-speed protein chromatographyJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2007Guo-Yong Sun Abstract Rigid biporous beads (BiPB) were fabricated by double emulsification. An aqueous suspension of superfine calcium carbonate granules and organic solvent were used as porogenic agents to create superpores and micropores, respectively. The polymerization of monomers, glycidyl methacrylate, and ethylene glycol dimethacrylate was initiated with benzoin ethyl ether by ultraviolet irradiation. Modified with diethylamine (DEA), the BiPB were derivatized into an anion-exchange medium (which is denoted as DEA,BiPB). The DEA,BiPB with an average diameter of 46.3 ,m was characterized to possess two types of pores, that is, micropores (20,200 nm) and superpores (500,5300 nm). Flow hydrodynamic experiments showed that the DEA,BiPB column had a smaller backpressure than that of the conventional microporous beads column at a given flow rate. The static adsorption capacity of the DEA,BiPB was close to that of the DEA,MiPB for bovine serum albumin. However, frontal analysis demonstrated that the dynamic binding capacity of the DEA,BiPB column was two times higher than that of the DEA,MiPB at a flow rate of 1800 cm/h. Moreover, the purification of the molecular chaperone GroEL was carried out with the DEA,BiPB column at two flow rates (150 and 1500 cm/h). This showed that the GroEL purification was nearly the same at the two flow rates tested. These results indicate that the DEA,BiPB column is promising for high-speed protein chromatography. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 17,23, 2007 [source] A modified cellulose adsorbent for the removal of nickel(II) from aqueous solutionsJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 11 2006David W O'Connell Abstract A series of adsorption studies was carried out on a glycidyl methacrylate- modified cellulose material functionalised with imidazole (Cellulose- g -GMA-Imidazole) to assess its capacity in the removal of Ni(II) ions from aqueous solution. The study sought to establish the effect of a number of parameters on the removal of Ni(II) from solution by the Cellulose- g -GMA-Imidazole. In particular, the influence of initial metal concentration, contact time, solution temperature and pH were assessed. The studies indicated a Ni(II) uptake on the Cellulose- g -GMA-Imidazole sorbent of approximately 48 mg g,1 of nickel from aqueous solution. The adsorption process fitted the Langmuir model of adsorption and the binding process was mildly endothermic. The kinetics of the adsorption process indicated that nickel uptake occurred within 400 min and that pseudo-second order kinetics best describe the overall adsorption process. Nickel(II) adsorption, recovery and re-adsorption studies indicated that at highly acidic pH values the adsorbent material becomes unstable, but in the range pH 3,6, the adsorbent is stable and shows limited but significant Ni(II) recovery and re-adsorption capability. Copyright © 2006 Society of Chemical Industry [source] Methyl 3-[3,,4,-(methylenedioxy)phenyl]-2-methyl glycidate: An Ecstasy Precursor Seized in Sydney, AustraliaJOURNAL OF FORENSIC SCIENCES, Issue 4 2007Michael Collins Ph.D. Abstract:, Five 44 gallon drums labeled as glycidyl methacrylate were seized by the Australian Customs Service and the Australian Federal Police at Port Botany, Sydney, Australia, in December 2004. Each drum contained a white, semisolid substance that was initially suspected to be 3,4-methylenedioxymethylamphetamine (MDMA). Gas chromatography,mass spectroscopy (GC/MS) analysis demonstrated that the material was neither glycidyl methacrylate nor MDMA. Because intelligence sources employed by federal agents indicated that this material was in some way connected to MDMA production, suspicion fell on the various MDMA precursor chemicals. Using a number of techniques including proton nuclear magnetic resonance spectroscopy (1H NMR), carbon nuclear magnetic resonance spectroscopy (13C NMR), GC/MS, infrared spectroscopy, and total synthesis, the unknown substance was eventually identified as methyl 3-[3,,4,(methylenedioxy)phenyl]-2-methyl glycidate. The substance was also subjected to a published hydrolysis and decarboxylation procedure and gave a high yield of the MDMA precursor chemical, 3,4-methylenedioxyphenyl-2-propanone, thereby establishing this material as a "precursor to a precursor." [source] Solid phase peptide synthesis on epoxy-bearing methacrylate monolithsJOURNAL OF PEPTIDE SCIENCE, Issue 12 2004E. Vlakh Abstract Monoliths based on a copolymer of glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA) can be used directly as sorbents for affinity chromatography after solid phase peptide synthesis. The quality of the synthesized products, the amount of grown peptides on a support and the reproducibility of the process must be considered. A determination of the quantity of the introducing ,-Ala (and, consequently, the total amount of synthesized peptide) was carried out. Three peptides complementary to recombinant tissue plasminogen activator (t-PA) have been synthesized using Fmoc-chemistry on GMA-EDMA disks. The peptidyl ligands were analysed by amino acid analysis, ES-MS and HPLC methods. The affinity binding parameters were obtained from frontal elution data. The results were compared with those established for GMA-EDMA affinity sorbents formed by the immobilization of the same but separately synthesized and purified ligands. The immobilization on GMA-EDMA disks was realized using a one-step reaction between the amino groups of the synthetic ligand and the original epoxy groups of monolithic material. The affinity constants found for two kinds of sorbent did not vary significantly. Finally, the directly obtained affinity sorbents were tested for t-PA separation from a cellular supernatant. Copyright © 2004 European Peptide Society and John Wiley & Sons, Ltd. [source] Synthesis and characterization of a poly(GMA)-graft-poly(Z- L -lysine) graft copolymer with a rod-like structureJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 18 2009You-Liang Tu Abstract This study applied the macromonomers and glycidyl methacrylate (GMA) to synthesize a series of the graft copolymers, poly(GMA)-graft-poly(Z- L -lysine), and investigated the conformation of the graft copolymer. The graft copolymers were synthesized with different GMA monomer ratios (28 to 89%) and different degrees of polymerization (DP) (8 to 15) of the poly(Z- L -lysine) side chain to analyze secondary structure relationships. Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), and both wide angle and small angle X-ray scattering spectroscopy (WAXS, SAXS) were used to investigate the relationship between the microstructure and conformation of the graft copolymers and the different monomer ratios and side chain DP. In AFM images, n8-G89 (the graft copolymer containing 89% GMA units and the macromonomer DP is 8) showed tiny and uniform rod-like structures, and n14-G43 (the graft copolymer containing 43% GMA units and the macromonomer DP is 14) showed uniform rod-like structures. FTIR spectra of the graft copolymers showed that the variations of ,-helix and ,-sheet secondary structures in the graft copolymers relate to the monomer ratios of the graft copolymers. However, the X-ray scattering patterns indicated that the graft copolymer conformations were mainly dependent on the poly(Z- L -lysine) side chain length, and these results were completely in accordance with the AFM images. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4655,4669, 2009 [source] Using glycidyl methacrylate as cross-linking agent to prepare thermosensitive hydrogels by a novel one-step methodJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 6 2008Jianping Deng Abstract A novel one-step approach is reported to prepare thermosensitive hydrogels simply by using hydroxypropyl-,-cyclodextrin (HP-,-CD)/glycidyl methacrylate (GMA)/N -isopropylacrylamide (NIPAM) system. From GMA and HP-,-CD, HP-,-CD/GMA inclusion complex was prepared and identified with NMR, FTIR, and UV-vis spectroscopies. GMA in the form of HP-,-CD/GMA complex was copolymerized with NIPAM in water with K2S2O8 as initiator, yielding hydrogels designated as poly(NIPAM-CD-GMA). The inclusion of CD in the hydrogels was confirmed by FTIR spectroscopy. The contents of CD and GMA placed considerable influence on the swelling ratio and temperature-sensitivity of the produced hydrogels. The hydrogels bearing CD moieties showed higher swelling ratio and temperature-sensitivity when compared with that without CD. The porous structure of the hydrogels containing CD was observed in the SEM images. Relevant mechanism of the ring-opening reaction of epoxide groups in GMA, the subsequent crosslinking reactions and the formation of hydrogels containing CD moieties were proposed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2193,2201, 2008 [source] |