Home About us Contact | |||
Glutathione Depletion (glutathione + depletion)
Selected AbstractsPreferential Resistance of Dopaminergic Neurons to the Toxicity of Glutathione Depletion Is Independent of Cellular Glutathione Peroxidase and Is Mediated by TetrahydrobiopterinJOURNAL OF NEUROCHEMISTRY, Issue 6 2000Ken Nakamura Abstract: Depletion of glutathione in the substantia nigra is one of the earliest changes observed in Parkinson's disease (PD) and could initiate dopaminergic neuronal degeneration. Nevertheless, experimental glutathione depletion does not result in preferential toxicity to dopaminergic neurons either in vivo or in vitro. Moreover, dopaminergic neurons in culture are preferentially resistant to the toxicity of glutathione depletion, possibly owing to differences in cellular glutathione peroxidase (GPx1) function. However, mesencephalic cultures from GPx1-knockout and wild-type mice were equally susceptible to the toxicity of glutathione depletion, indicating that glutathione also has GPx1-independent functions in neuronal survival. In addition, dopaminergic neurons were more resistant to the toxicity of both glutathione depletion and treatment with peroxides than nondopaminergic neurons regardless of their GPx1 status. To explain this enhanced antioxidant capacity, we hypothesized that tetrahydrobiopterin (BH4) may function as an antioxidant in dopaminergic neurons. In agreement, inhibition of BH4 synthesis increased the susceptibility of dopaminergic neurons to the toxicity of glutathione depletion, whereas increasing BH4 levels completely protected nondopaminergic neurons against it. Our results suggest that BH4 functions as a complementary antioxidant to the glutathione/glutathione peroxidase system and that changes in BH4 levels may contribute to the pathogenesis of PD. [source] Glutathione depletion and cardiomyocyte apoptosis in viral myocarditisEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 3 2004V. Kytö Abstract Background, The course of viral myocarditis is highly variable. Oxidative stress and Bcl-2 family genes may play a role in its pathogenesis by regulating the amount of cardiomyocyte apoptosis. Apoptosis is difficult to detect and quantify in vivo. Therefore, we set to look for indicators of this potentially preventable form of cell death during various phases of experimental murine coxsackievirus B3 myocarditis. Methods, BALB/c mice were infected with the cardiotropic coxsackievirus B3 variant. Glutathione (HPLC), cardiomyocyte apoptosis (TUNEL and caspase-3 cleavage), Bax and Bcl-XL mRNA expression (real time RT-PCR), histopathology and viral replication (plaque assay and real time RT-PCR) were measured from day 3 to day 20 after infection. Results, Infection caused severe myocarditis and led to progressive decrease of plasma glutathione levels. Myocardial mRNA levels of pro-apoptotic Bax and antiapoptotic Bcl-XL were significantly increased from day 3 onwards. Bax mRNA and ratio of Bax to Bcl-XL correlated with cardiomyocyte apoptosis (r = 0·77, P = < 0·001 and r 0·51, P < 0·01, respectively). Cardiomyocyte apoptosis was highest on day 5, coinciding with a rapid decline in plasma glutathione (r = ,0·52, P = 0·003). Conclusions, Systemic oxidative stress as indicated by decreased plasma glutathione levels coincides with cardiomyocyte apoptosis in experimental coxsackievirus myocarditis. Decreased plasma glutathione levels and changes in cardiac Bax and Bcl-XL mRNA expression identify a phase of myocarditis in which the potentially preventable cardiomyocyte apoptosis is mostly observed. [source] Glutathione depletion in hippocampal cells increases levels of H and L ferritin and glutathione S-transferase mRNAsGENES TO CELLS, Issue 5 2007Nadya Morozova Glutathione plays an essential role in maintaining cellular redox balance, protecting cells from oxidative stress and detoxifying xenobiotic compounds. Glutathione depletion has been implicated in neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Cells of neuronal origin are acutely sensitive to glutathione depletion, providing an avenue for studying the mechanisms invoked for neuronal survival in response to oxidant challenge. We investigated the changes in mRNA profile in HT22 hippocampal cells following administration of homocysteic acid (HCA), a glutathione-depleting drug. We report that HCA treatment of HT22 murine hippocampal cells increases the levels of the mRNAs encoding at least three proteins involved in protection from oxidant injury, the mRNAs encoding heavy (H) and light (L) ferritin and glutathione S-transferase (GST). [source] Mechanisms for sensitization to TNF-induced apoptosis by acute glutathione depletion in murine hepatocytesHEPATOLOGY, Issue 6 2003Katsuhiko Matsumaru We previously reported that depletion of glutathione in murine hepatocytes by diethylmaleate (DEM) or acetaminophen (APAP) leads to oxidative stress,dependent necrosis and sensitizes to tumor necrosis factor (TNF)-induced apoptosis in an oxidative stress,independent fashion, which could not be explained by interference with nuclear factor ,B (NF-,B) nuclear translocation. The present report explores the mechanisms of these effects. We observed that DEM led to necrosis when both mitochondrial and cytosol glutathione were depleted profoundly but sensitized to TNF-induced apoptosis when cytosol glutathione was depleted selectively. DEM and APAP lead to a significant decrease in reduced glutathione (GSH)/glutathione disulfide (GSSG) ratio. Glutathione depletion by DEM or APAP was associated with inhibition of TNF-induced NF-,B transactivation of anti-apoptotic genes, including inducible nitric oxide synthase (i-NOS). Provision of exogenous NO partially abrogated the sensitization to TNF in response to glutathione depletion. Glutathione depletion alone led to sustained increase in phospho-jun levels and c-Jun-N-terminal kinase (JNK) activity. JNK inhibitor partially blocked the sensitization to TNF-induced apoptosis accompanying glutathione depletion. In conclusion, these findings suggest that extramitochondrial glutathione depletion alters the thiol-disulfide redox state, leading to inhibition of NF-,B transactivation of survival genes and to sustained activation of JNK, both of which contribute to the sensitization to TNF-induced apoptosis. [source] Oxidative stress on EAAC1 is involved in MPTP-induced glutathione depletion and motor dysfunctionEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2008Koji Aoyama Abstract Excitatory amino acid carrier 1 (EAAC1) is a glutamate transporter expressed on mature neurons in the CNS, and is the primary route for uptake of the neuronal cysteine needed to produce glutathione (GSH). Parkinson's disease (PD) is a neurodegenerative disorder pathogenically related to oxidative stress and shows GSH depletion in the substantia nigra (SN). Herein, we report that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, an experimental model of PD, showed reduced motor activity, reduced GSH contents, EAAC1 translocation to the membrane and increased levels of nitrated EAAC1. These changes were reversed by pre-administration of n-acetylcysteine (NAC), a membrane-permeable cysteine precursor. Pretreatment with 7-nitroindazole, a specific neuronal nitric oxide synthase inhibitor, also prevented both GSH depletion and nitrotyrosine formation induced by MPTP. Pretreatment with hydrogen peroxide, l -aspartic acid ,-hydroxamate or 1-methyl-4-phenylpyridinium reduced the subsequent cysteine increase in midbrain slice cultures. Studies with chloromethylfluorescein diacetate, a GSH marker, demonstrated dopaminergic neurons in the SN to have increased GSH levels after NAC treatment. These findings suggest that oxidative stress induced by MPTP may reduce neuronal cysteine uptake, via EAAC1 dysfunction, leading to impaired GSH synthesis, and that NAC would exert a protective effect against MPTP neurotoxicity by maintaining GSH levels in dopaminergic neurons. [source] Pyruvate reduces DNA damage during hypoxia and after reoxygenation in hepatocellular carcinoma cellsFEBS JOURNAL, Issue 19 2007Emilie Roudier Pyruvate is located at a crucial crossroad of cellular metabolism between the aerobic and anaerobic pathways. Modulation of the fate of pyruvate, in one direction or another, can be important for adaptative response to hypoxia followed by reoxygenation. This could alter functioning of the antioxidant system and have protective effects against DNA damage induced by such stress. Transient hypoxia and alterations of pyruvate metabolism are observed in tumors. This could be advantageous for cancer cells in such stressful conditions. However, the effect of pyruvate in tumor cells is poorly documented during hypoxia/reoxygenation. In this study, we showed that cells had a greater need for pyruvate during hypoxia. Pyruvate decreased the number of DNA breaks, and might favor DNA repair. We demonstrated that pyruvate was a precursor for the biosynthesis of glutathione through oxidative metabolism in HepG2 cells. Therefore, glutathione decreased during hypoxia, but was restored after reoxygenation. Pyruvate had beneficial effects on glutathione depletion and DNA breaks induced after reoxygenation. Our results provide more evidence that the ,-keto acid promotes the adaptive response to hypoxia followed by reoxygenation. Pyruvate might thus help to protect cancer cells under such stressful conditions, which might be harmful for patients with tumors. [source] Glutathione depletion in hippocampal cells increases levels of H and L ferritin and glutathione S-transferase mRNAsGENES TO CELLS, Issue 5 2007Nadya Morozova Glutathione plays an essential role in maintaining cellular redox balance, protecting cells from oxidative stress and detoxifying xenobiotic compounds. Glutathione depletion has been implicated in neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Cells of neuronal origin are acutely sensitive to glutathione depletion, providing an avenue for studying the mechanisms invoked for neuronal survival in response to oxidant challenge. We investigated the changes in mRNA profile in HT22 hippocampal cells following administration of homocysteic acid (HCA), a glutathione-depleting drug. We report that HCA treatment of HT22 murine hippocampal cells increases the levels of the mRNAs encoding at least three proteins involved in protection from oxidant injury, the mRNAs encoding heavy (H) and light (L) ferritin and glutathione S-transferase (GST). [source] Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletionHEPATOLOGY, Issue 3 2003Olga Coll The mitochondrial pool of reduced glutathione (mGSH) is known to play a protective role against liver injury and cytokine-mediated cell death. However, the identification of the mitochondrial carriers involved in its transport in hepatocellular mitochondria remains unestablished. In this study, we show that the functional expression of the 2-oxoglutarate carrier from HepG2 cells in mitochondria from Xenopus laevis oocytes conferred a reduced glutathione (GSH) transport activity that was inhibited by phenylsuccinate, a specific inhibitor of the carrier. In addition, the mitochondrial transport of GSH and 2-oxoglutarate in isolated mitochondria from rat liver exhibited mutual competition and sensitivity to glutamate and phenylsuccinate. Interestingly, the kinetics of 2-oxoglutarate transport in rat liver mitochondria displayed a single Michaelis-Menten component with a Michaelis constant of 3.1 ± 0.3 mmol/L and maximum velocity of 1.9 ± 0.1 nmol/mg protein/25 seconds. Furthermore, the initial rate of 2-oxoglutarate was reduced in mitochondria from alcohol-fed rat livers, an effect that was not accompanied by an alcohol-induced decrease in the 2-oxoglutarate messenger RNA levels but rather by changes in mitochondrial membrane dynamics induced by alcohol. The fluidization of mitochondria by the fluidizing agent 2-(2-methoxyethoxy)ethyl 8-(cis-2-n-octylcyclopropyl) (A2C) restored the initial transport rate of both GSH and 2-oxoglutarate. Finally, these changes were reproduced in normal liver mitochondria enriched in cholesterol where the fluidization of cholesterol-enriched mitochondria with A2C restored the order membrane parameter and the mitochondrial 2-oxoglutarate uptake. In conclusion, these findings provide unequivocal evidence for 2-oxoglutarate as a GSH carrier and its sensitivity to membrane dynamics perturbation contributes in part to the alcohol-induced mGSH depletion. [source] Mechanisms for sensitization to TNF-induced apoptosis by acute glutathione depletion in murine hepatocytesHEPATOLOGY, Issue 6 2003Katsuhiko Matsumaru We previously reported that depletion of glutathione in murine hepatocytes by diethylmaleate (DEM) or acetaminophen (APAP) leads to oxidative stress,dependent necrosis and sensitizes to tumor necrosis factor (TNF)-induced apoptosis in an oxidative stress,independent fashion, which could not be explained by interference with nuclear factor ,B (NF-,B) nuclear translocation. The present report explores the mechanisms of these effects. We observed that DEM led to necrosis when both mitochondrial and cytosol glutathione were depleted profoundly but sensitized to TNF-induced apoptosis when cytosol glutathione was depleted selectively. DEM and APAP lead to a significant decrease in reduced glutathione (GSH)/glutathione disulfide (GSSG) ratio. Glutathione depletion by DEM or APAP was associated with inhibition of TNF-induced NF-,B transactivation of anti-apoptotic genes, including inducible nitric oxide synthase (i-NOS). Provision of exogenous NO partially abrogated the sensitization to TNF in response to glutathione depletion. Glutathione depletion alone led to sustained increase in phospho-jun levels and c-Jun-N-terminal kinase (JNK) activity. JNK inhibitor partially blocked the sensitization to TNF-induced apoptosis accompanying glutathione depletion. In conclusion, these findings suggest that extramitochondrial glutathione depletion alters the thiol-disulfide redox state, leading to inhibition of NF-,B transactivation of survival genes and to sustained activation of JNK, both of which contribute to the sensitization to TNF-induced apoptosis. [source] Selective mitochondrial glutathione depletion by ethanol enhances acetaminophen toxicity in rat liverHEPATOLOGY, Issue 2 2002Ping Zhao Chronic alcohol consumption may potentiate acetaminophen (APAP) hepatotoxicity through enhanced formation of N -acetyl- p -benzoquinone imine (NAPQI) via induction of cytochrome P450 2E1 (CYP2E1). However, CYP2E1 induction appears to be insufficient to explain the claimed magnitude of the interaction. We assessed the role of selective depletion of liver mitochondrial glutathione (GSH) by chronic ethanol. Rats were fed the Lieber-DeCarli diet for 10 days or 6 weeks. APAP toxicity in liver slices (% glutathione- S -transferase , released to the medium, GST release) and NAPQI toxicity in isolated liver mitochondria (succinate dehydrogenase inactivation, SDH) from these rats were compared with pair-fed controls. Ethanol induced CYP2E1 in both the 10-day and 6-week groups by ,2-fold. APAP toxicity in liver slices was higher in the 6-week ethanol group than the 10-day ethanol group. Partial inhibition of NAPQI formation by CYP2E1 inhibitor diethyldithiocarbamate to that of pair-fed controls abolished APAP toxicity in the 10-day ethanol group only. Ethanol selectively depleted liver mitochondrial GSH only in the 6-week group (by 52%) without altering cytosolic GSH. Significantly greater GSH loss and APAP covalent binding were observed in liver slice mitochondria of the 6-week ethanol group. Isolated mitochondria of the 6-week ethanol group were ,50% more susceptible to NAPQI (25-165 ,mol/L) induced SDH inactivation. This increased susceptibility was reproduced in pair-fed control mitochondria pretreated with diethylmaleate. In conclusion, 10-day ethanol feeding enhances APAP toxicity through CYP2E1 induction, whereas 6-week ethanol feeding potentiates APAP hepatotoxicity by inducing CYP2E1 and selectively depleting mitochondrial GSH. [source] Reduced glutathione depletion causes necrosis and sensitization to tumor necrosis factor-,,induced apoptosis in cultured mouse hepatocytesHEPATOLOGY, Issue 1 2002Hidenari Nagai The effect of reduced glutathione (GSH) depletion by acetaminophen (APAP), diethylmaleate (DEM), or phorone on the mode of cell death and susceptibility to tumor necrosis factor (TNF)-induced cell death was studied in cultured mouse hepatocytes. Dose-dependent necrosis was the exclusive mode of cell death with APAP alone, but the addition of TNF-, induced a switch to about half apoptosis without changing total loss of viability. This effect was seen at 1 and 5 mmol/L but was inhibited at 10 and 20 mmol/L APAP. The switch to apoptosis was associated with increased caspase activities, release of cytochrome c, and DNA laddering and was inhibited by caspase inhibitors. DEM and phorone also induced dose-dependent necrosis. Treatment with TNF-, under these conditions lead to incremental cell death in the form of apoptosis at 0.25 and 0.5 mmol/L DEM and 0.1 and 0.2 mmol/L phorone. At 1.0 and 2.0 mmol/L DEM and 0.5 mmol/L phorone, 90% to 100% necrosis was observed with resistance to TNF-, effects. The apoptosis with TNF-, plus DEM was confirmed by DNA laddering and inhibition by caspase inhibitors. However, in the presence of caspase inhibitors, the increment in cell death induced by TNF-, persisted as an increase in necrosis. A combination of antioxidants, vitamin E, and butylated hydroxytoluene (BHT) markedly inhibited necrosis induced by APAP or DEM alone, but the sensitization to TNF-,,induced apoptosis was unaffected. GSH monoethylester (GSH-EE) protected against necrosis and apoptosis. In conclusion, depletion of GSH by APAP, DEM, or phorone causes oxidative stress-induced necrosis and sensitizes to an oxidative stress independent TNF-,,induced apoptosis. [source] Glutathione-S-transferase genotypes and the adverse effects of azathioprine in young patients with inflammatory bowel diseaseINFLAMMATORY BOWEL DISEASES, Issue 1 2007Gabriele Stocco PhD Abstract Background: Adverse drug reactions to azathioprine, the prodrug of 6-mercaptopurine, occur in 15%,38% of patients and the majority are not explained by thiopurine-S-methyltransferase (TPMT) deficiency. Azathioprine is known to induce glutathione depletion and consumption of glutathione is greater in cells with high glutathione-S-transferase (GST) activity compared with those with low activity; moreover, some reports indicate that GST might play a direct role in the reaction of glutathione with azathioprine. The association between polymorphisms of GST-M1, GST-P1, GST-T1, and TPMT genes and the adverse effects of azathioprine was therefore investigated. Methods: Seventy patients with inflammatory bowel disease (IBD), treated with azathioprine, were enrolled and clinical data were retrospectively determined. TPMT and GST genotyping were performed by polymerase chain reaction (PCR) assays on DNA extracted from blood samples. Results: Fifteen patients developed adverse effects (21.4%); there was a significant underrepresentation of the GST-M1 null genotype among patients developing adverse drug reactions to azathioprine (odds ratio [OR] = 0.18, 95% confidence interval [CI] = 0.037,0.72, P = 0.0072) compared with patients who did not develop adverse effects. Patients heterozygous for TPMT mutations presented a marginally significant increased probability of developing adverse effects (OR = 6.38, 95% CI = 0.66,84.1, P = 0.062). Moreover, among the 55 patients who did not develop adverse effects, there was a significant underrepresentation of the GST-M1 null genotype among patients who displayed lymphopenia as compared with those that did not display this effect of azathioprine (OR = 0.15, 95% CI = 0.013,1.08, P = 0.032). Conclusion: Patients with IBD with a wildtype GST-M1 genotype present increased probability of developing adverse effects and increased incidence of lymphopenia during azathioprine treatment. (Inflamm Bowel Dis 2007;13:57,64) [source] Effect of oral administration of arabic gum on cisplatin-induced nephrotoxicity in ratsJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 3 2003Abdulhakeem A. Al-Majed Abstract It has been recently postulated from our laboratory that Arabic gum (AG) offers a protective effect in the kidney of rats against nephrotoxicity induced by gentamicin via inhibiting lipid peroxidation. It has also recently shown a powerful antioxidant effect through scavenging superoxide anions. In this study we utilized a rat model of cisplatin (CP)-induced nephrotoxicity to determine its peak time following (1, 2, 5, and 7 days) of a single CP (7.5 mg/kg, i.p.) injection. Also, a possible protective effect of cotreatment with AG (7.5 g/kg/day p.o.) on CP-induced nephrotoxicity was investigated. Biochemical as well as histological assessments were carried out. CP-induced nephrotoxicity was manifested by significant elevations of the functional parameters blood urea, serum creatinine, and kidney/body weight ratio. Maximum toxic effects of CP were observed 5 days after its injection, while it started after day 1 in the biochemical parameters, such as glutathione depletion in the kidney tissue with concomitant increases in lipid peroxides and platinum content. Additionally, severe necrosis and desquamation of tubular epithelial cells in renal cortex as well as interstitial nephritis were observed after 5 days in CP-treated animals. Five days after AG cotreatment with CP did not protect the kidney from the damaging effects of CP. However, it significantly reduced CP-induced lipid peroxidation. These findings suggest that lipid peroxidation is not the main cause of CP-induced nephrotoxicity but it is rather more dependent on other factors such as platinum disposition in renal interstitial tubules. © 2003 Wiley Periodicals, Inc. J Biochem Mol Toxicol 17:146,153, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.10072 [source] Cyclo(His-Pro) promotes cytoprotection by activating Nrf2-mediated up-regulation of antioxidant defenceJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 6 2009Alba Minelli Abstract Hystidyl-proline [cyclo(His-Pro)] is an endogenous cyclic dipeptide produced by the cleavage of thyrotropin releasing hormone. Previous studies have shown that cyclo(His-Pro) protects against oxidative stress, although the underlying mechanism has remained elusive. Here, we addressed this issue and found that cyclo(His-Pro) triggered nuclear accumulation of NF-E2-related factor-2 (Nrf2), a transcription factor that up-regulates antioxidant-/electrophile-responsive element (ARE-EpRE)-related genes, in PC12 cells. Cyclo(His-Pro) attenuated reactive oxygen species production, and prevented glutathione depletion caused by glutamate, rotenone, paraquat and ,-amyloid treatment. Moreover, real-time PCR analyses revealed that cyclo(His-Pro) induced the expression of a number of ARE-related genes and protected cells against hydrogen peroxide-mediated apoptotic death. Furthermore, these effects were abolished by RNA interference-mediated Nrf2 knockdown. Finally, pharmacological inhibition of p-38 MAPK partially prevented both cyclo(His-Pro)-mediated Nrf2 activation and cellular protection. These results suggest that the signalling mechanism responsible for the cytoprotective actions of cyclo(His-Pro) would involve p-38 MAPK activation leading to Nrf2-mediated up-regulation of antioxidant cellular defence. [source] Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cellsJOURNAL OF NEUROCHEMISTRY, Issue 5 2007Xingshun Xu Abstract Glutamate, a major excitatory neurotransmitter in the CNS, plays a critical role in neurological disorders such as stroke and Parkinson's disease. Recent studies have suggested that glutamate excess can result in a form of cell death called glutamate-induced oxytosis. In this study, we explore the protective effects of necrostatin-1 (Nec-1), an inhibitor of necroptosis, on glutamate-induced oxytosis. We show that Nec-1 inhibits glutamate-induced oxytosis in HT-22 cells through a mechanism that involves an increase in cellular glutathione (GSH) levels as well as a reduction in reactive oxygen species production. However, Nec-1 had no protective effect on free radical-induced cell death caused by hydrogen peroxide or menadione, which suggests that Nec-1 has no antioxidant effects. Interestingly, the protective effect of Nec-1 was still observed when cellular GSH was depleted by buthionine sulfoximine, a specific and irreversible inhibitor of glutamylcysteine synthetase. Our study further demonstrates that Nec-1 significantly blocks the nuclear translocation of apoptosis-inducing factor (a marker of caspase-independent programmed cell death) and inhibits the integration of Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (a pro-death member of the Bcl-2 family) into the mitochondrial membrane. Taken together, these results demonstrate for the first time that Nec-1 prevents glutamate-induced oxytosis in HT-22 cells through GSH related as well as apoptosis-inducing factor and Bcl-2/adenovirus E1B 19 kDa-interacting protein 3-related pathways. [source] Dipyridamole protects cultured rat embryonic cortical neurons from neurotoxic insultJOURNAL OF NEUROCHEMISTRY, Issue 2002A. D. Blake The effects of a clinically useful cardiovascular agent, dipyridamole, were examined in a rodent tissue culture model of neural protection. Dipyridamole effectively protected rat embryonic day 18 (E18) cortical neurons from either trophic deprivation or endogenous glutathione depletion by l -buthionine (R,S) sulfoximine (BSO). Trophic deprivation was associated with an increase in intracellular oxidative stress, as determined by the increased fluorescence of dichloro, dihydrofluorescein (H2DCFDA). Dipyridamole's neural protection was time and concentration-dependent (EC50 = 342 nm), and its continuous presence in the culture medium was required. Dipyridamole or exogenously added glutathione markedly decreased trophic deprivation induced H2DCFDA fluorescence, indicating a reduction in neuronal oxidative stress. These results demonstrate that dipyridamole protects primary neuronal cultures against either trophic or chemically mediated insults, and suggest that dipyridamole has a potent antioxidant ability that compensates for glutathione depletion in primary neuronal cells. [source] Preferential Resistance of Dopaminergic Neurons to the Toxicity of Glutathione Depletion Is Independent of Cellular Glutathione Peroxidase and Is Mediated by TetrahydrobiopterinJOURNAL OF NEUROCHEMISTRY, Issue 6 2000Ken Nakamura Abstract: Depletion of glutathione in the substantia nigra is one of the earliest changes observed in Parkinson's disease (PD) and could initiate dopaminergic neuronal degeneration. Nevertheless, experimental glutathione depletion does not result in preferential toxicity to dopaminergic neurons either in vivo or in vitro. Moreover, dopaminergic neurons in culture are preferentially resistant to the toxicity of glutathione depletion, possibly owing to differences in cellular glutathione peroxidase (GPx1) function. However, mesencephalic cultures from GPx1-knockout and wild-type mice were equally susceptible to the toxicity of glutathione depletion, indicating that glutathione also has GPx1-independent functions in neuronal survival. In addition, dopaminergic neurons were more resistant to the toxicity of both glutathione depletion and treatment with peroxides than nondopaminergic neurons regardless of their GPx1 status. To explain this enhanced antioxidant capacity, we hypothesized that tetrahydrobiopterin (BH4) may function as an antioxidant in dopaminergic neurons. In agreement, inhibition of BH4 synthesis increased the susceptibility of dopaminergic neurons to the toxicity of glutathione depletion, whereas increasing BH4 levels completely protected nondopaminergic neurons against it. Our results suggest that BH4 functions as a complementary antioxidant to the glutathione/glutathione peroxidase system and that changes in BH4 levels may contribute to the pathogenesis of PD. [source] Nordihydroguaiaretic acid induces astroglial death via glutathione depletionJOURNAL OF NEUROSCIENCE RESEARCH, Issue 14 2007Joo-Young Im Abstract Nordihydroguaiaretic acid (NDGA) is known to cause cell death in certain cell types that is independent of its activity as a lipoxygenase inhibitor; however, the underlying mechanisms are not fully understood. In the present study, we examined the cellular responses of cultured primary astroglia to NDGA treatment. Continuous treatment of primary astroglia with 30 ,M NDGA caused >85% cell death within 24 hr. Cotreatment with the lipoxygenase products 5-HETE, 12-HETE, and 15-HETE did not override the cytotoxic effects of NDGA. In assays employing the mitochondrial membrane potential-sensitive dye JC-1, NDGA was found to induce a rapid and almost complete loss of mitochondrial membrane potential. However, the mitochondrial permeability transition pore inhibitors cyclosporin A and bongkrekic acid did not block NDGA-induced astroglial death. We found that treatment with N-acetyl cysteine (NAC), glutathione (GSH), and GSH ethyl ester (GSH-EE) did inhibit NDGA-induced astroglial death. Consistently, NDGA-induced astroglial death proceeded in parallel with intracellular GSH depletion. Pretreatment with GSH-EE and NAC did not block NDGA-induced mitochondrial membrane potential loss, and there was no evidence that reactive oxygen species (ROS) production was involved in NDGA-induced astroglial death. Together, these results suggest that NDGA-induced astroglial death occurs via a mechanism that involves GSH depletion independent of lipoxygenase activity inhibition and ROS stress. © 2007 Wiley-Liss, Inc. [source] Cadmium-induced astroglial death proceeds via glutathione depletionJOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2006Joo-Young Im Abstract Cadmium is a heavy metal that accumulates in the body, and its accumulation in the brain damages both neurons and glial cells. In the current study, we explored the mechanism underlying cadmium toxicity in primary cortical astroglia cultures. Chronic treatment with 10 ,M cadmium was sufficient to cause 90% cell death in 18 hr. However, unlike that observed in neurons, cadmium-induced astroglial toxicity was not attenuated by the antioxidants trolox (100 ,M), caffeic acid (1 mM), and vitamin C (1 mM). In contrast, extracellular 100 ,M glutathione (GSH; ,-Glu-Cys-Gly) or 100 ,M cysteine almost completely blocked cadmium-induced astroglial death, whereas 300 ,M oxidized GSH (GSSG) or 300 ,M cystine, which do not have the free thiol group, were ineffective. In addition, cadmium toxicity was noticeably inhibited or enhanced when intracellular GSH was, respectively, increased by using the cell-permeable glutathione ethyl ester (GSH-EE) or depleted by using buthionine sulfoximine (BSO), an inhibitor of ,-glutamylcysteine synthetase. In agreement with these data, intracellular GSH levels were found to be depressed in cadmium-treated astrocytes. These results suggest that the toxic effect of cadmium on primary astroglial cells involves GSH depletion and, furthermore, that GSH administration can potentially be used to counteract cadmium-induced astroglial cell death therapeutically. © 2005 Wiley-Liss, Inc. [source] Nigral glutathione deficiency is not specific for idiopathic Parkinson's diseaseMOVEMENT DISORDERS, Issue 9 2003Paul S. Fitzmaurice PhD Abstract The consistent findings of decreased levels of the major antioxidant glutathione in substantia nigra of patients with idiopathic Parkinson's disease (PD) has provided most of the basis for the oxidative stress hypothesis of the etiology of PD. To establish whether a nigral glutathione deficiency is unique to PD, as is generally assumed, or is present in other Parkinsonian conditions associated with nigral damage, we compared levels of reduced glutathione (GSH) in postmortem brain of patients with PD to those with progressive supranuclear palsy (PSP) and multiple system atrophy (MSA). As compared with the controls, nigral GSH levels were decreased in the PD and PSP patient groups (P < 0.05 for PD [,30%], PSP [,21%]), whereas a similar decrease in the MSA patient group did not reach statistical significance (P = 0.078, MSA [,20%]). GSH levels were normal in all examined normal and degenerating extra-nigral brain areas in PSP and MSA. A trend for decreased levels of uric acid (antioxidant and product of purine catabolism) also was observed in nigra of all patient groups (,19 to ,30%). These data suggest that glutathione depletion, possibly consequent to overutilisation in oxidative stress reactions, could play a causal role in nigral degeneration in all nigrostriatal dopamine deficiency disorders, and that antioxidant therapeutic approaches should not be restricted to PD. © 2003 Movement Disorder Society [source] Real-time measurement of cytosolic free calcium concentration in DEM-treated HL-60 cells during static magnetic field exposure and activation by ATPBIOELECTROMAGNETICS, Issue 3 2009Camilla Rozanski Abstract This study investigated whether glutathione depletion affected the sensitivity of HL-60 cells to static magnetic fields. The effect of Diethylmaleate (DEM) on static magnetic field induced changes in cytosolic free calcium concentration ([Ca2+]c) was examined. Cells were loaded with a fluorescent dye and exposed to a uniform static magnetic field at a strength of 0 mT (sham) or 100 mT. [Ca2+]c was monitored during field and sham exposure using a ratiometric fluorescence spectroscopy system. Cells were activated by the addition of ATP. Metrics extracted from the [Ca2+]c time series included: average [Ca2+]c during the Pre-Field and Field Conditions, peak [Ca2+]c following ATP activation and the full width at half maximum (FWHM) of the peak ATP response. Comparison of each calcium metric between the sham and 100 mT experiments revealed the following results: average [Ca2+]c measured during the Field condition was 53,±,2 nM and 58,±,2 nM for sham and 100 mT groups, respectively. Average FWHM was 51,±,3 s and 54,±,3 s for sham and 100 mT groups, respectively. An effect of experimental order on the peak [Ca2+]c response to ATP in sham/sham experiments complicated the statistical analysis and did not allow pooling of the first and second order experiments. No statistically significant difference between the sham and 100 mT groups was observed for any of the calcium metrics. These data suggested that manipulation of free radical buffering capacity in HL-60 cells did not affect the sensitivity of the cells to a 100 mT static magnetic field. Bioelectromagnetics 30:213,221, 2009. © 2008 Wiley-Liss, Inc. [source] |