Home About us Contact | |||
Glutathione Content (glutathione + content)
Selected AbstractsOxidative damage is increased in human liver tissue adjacent to hepatocellular carcinomaHEPATOLOGY, Issue 6 2004Christoph Jüngst Accumulation of genetic alterations in hepatocarcinogenesis is closely associated with chronic inflammatory liver disease. 8-oxo-2,-deoxyguanosine (8-oxo-dG), the major promutagenic DNA adduct caused by reactive oxygen species (ROS), leads to G:C , T:A transversions. These lesions can be enzymatically repaired mainly by human MutT homolog 1 (hMTH1), human 8-oxo-guanine DNA glycosylase (hOGG1) and human MutY homolog (hMYH). The aim of this study was to evaluate the extent of oxidative damage and its dependence on the cellular antioxidative capacity and the expression of specific DNA repair enzymes in tumor (tu) and corresponding adjacent nontumor (ntu) liver tissue of 23 patients with histologically confirmed hepatocellular carcinoma. 8-oxo-dG levels, as detected by high-pressure liquid chromatography with electrochemical detection, were significantly (P = .003) elevated in ntu tissue (median, 129 fmol/,g DNA) as compared to tu tissue (median, 52 fmol/,g DNA), and were closely associated with inflammatory infiltration. In ntu tissue, the hepatic iron concentration and malondialdehyde levels were significantly (P = .001) higher as compared to tu tissue. Glutathione content, glutathione peroxidase activity and manganese superoxide dismutase messenger RNA (mRNA) expression did not show statistical differences between ntu and tu tissue. Real-time reverse transcription polymerase chain reaction revealed in tu tissue significantly (P = .014) higher hMTH1 mRNA expression compared to ntu tissue. In contrast, hMYH mRNA expression was significantly (P < .05) higher in ntu tissue. No difference in hOGG1 mRNA expression was seen between tu and ntu. In conclusion, these data suggest that ROS generated by chronic inflammation contribute to human hepatocarcinogenesis. The role of DNA repair enzymes appears to be of reactive rather than causative manner. (HEPATOLOGY 2004;39:1663,1672.) [source] E6* oncoprotein expression of human papillomavirus type-16 determines different ultraviolet sensitivity related to glutathione and glutathione peroxidase antioxidant defenceEXPERIMENTAL DERMATOLOGY, Issue 6 2005Stéphane Mouret Abstract:, Clinical observations of non-melanoma skin cancer in immunocompromised patients, such as organ transplant recipients, suggest co-operative effects of human papillomavirus (HPV) and ultraviolet (UV) radiation. The aim of the present study is to evaluate UV sensitivity and DNA damage formation according to antioxidant status in HPV16-infected keratinocytes. We used SKv cell lines, infected with HPV16 and well characterized for their proliferative and tumorigenic capacities. We showed that SKv cell lines presented various E6* (a truncated form of E6) RNA levels. We demonstrated that the higher oncoprotein RNA expression level was associated with a higher resistance to solar-simulated radiation, more specifically to UVB radiation and to hydrogen peroxide. Moreover, this high resistance was associated with a low oxidative DNA damage formation after UV radiation and was related to high glutathione content and glutathione peroxidase activities. Therefore, the results of our study suggest that E6* levels could modulate the glutathione/glutathione peroxidase pathway providing a mechanism to protect HPV-infected keratinocytes against an environmental oxidative stress, such as UV radiation. [source] Renal damage in rats induced by myocardial ischemia/reperfusion: Role of nitric oxideINTERNATIONAL JOURNAL OF UROLOGY, Issue 10 2006HAKAN PARLAKPINAR Background: It has been demonstrated that myocardial ischemia/reperfusion (MI/R) causes renal damage. However, the mechanism underlying this damage in kidneys during revascularization of myocardium is unclear. Direct renal ischemia/reperfusion has been implicated in the induction of inducible nitric oxide synthase (iNOS) that leads to increase production of nitric oxide (NO). Recently, excessive production of NO has been found to be involved in causing renal injury by formatting peroxinitrite (ONOO,). The aim of this study was to investigate whether NO has a role in this damage, using aminoguanidine (AMG), a known iNOS inhibitor and an antioxidant, in rats undergoing MI/R. Methods: Male Wistar rats were used for the experiments (n = 7 each group). In the MI/R group, the left coronary artery was occluded for 30 min and then reperfused for 120 min; the same procedure was used for the AMG group, with the additional step of AMG (200 mg/kg) administered 10 min prior to ischemia. A control group underwent sham operation. At the end of the reperfusion period, all rats were killed and their kidneys removed for biochemical determination and histopathological analysis. Results: Myocardial ischemia/reperfusion in the rat kidney was accompanied by a significant increase in malondialdehyde and NO production, and a decrease in glutathione content. Administration of AMG reduced malondialdehyde and NO production and prevented depletion of glutathione content. These beneficial changes in the biochemical parameters were also associated with parallel changes in histopathological appearance. Conclusion: These findings suggest that MI/R plays a causal role in kidney injury and AMG exerts renal-protective effects, probably by inhibiting NO production and antioxidant activities. [source] Stress response of yeast candida intermedia to Cr(VI)JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 6 2003Polona Jamnik Abstract Stress response of yeast Candida intermedia ZIM 156 exposed to chromium(VI) was investigated. Yeast cells were treated with Cr(VI) in concentrations of 50, 100, 300 and 500 ,M in the mid-exponential growth phase. Monitoring of some bioprocess parameters during growth, specifically pO2, showed that Cr(VI) addition, specifically in concentration of 100 and partially 50 ,mol/L, increased metabolism intensity, which is connected to induced stress responses. Furthermore, oxidation of 2,,7,-dichlorofluorescin indicated increased intracellular oxidant level, specifically at 100 ,M Cr(VI) concentration. Antioxidant defense systems were further investigated. Catalase and superoxide dismutase activity was not increased in the cells exposed to the both Cr(VI) concentrations, which indicate that catalase and superoxide dismutase do not participate in cell defense systems. In contrast intracellular glutathione content in reduced form increased significantly in the cells exposed to 100 ,mol Cr(VI)/L. Therefore, we demonstrated that glutathione plays an important role in the stress response of C. intermedia to Cr(VI). © 2003 Wiley Periodicals, Inc. J Biochem Mol Toxicol 17:316,323, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.10093 [source] Effects of quercetin on antioxidant defense in streptozotocin-induced diabetic ratsJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 3 2001Ruth A. Sanders Abstract In light of evidence that some complications of diabetes mellitus may be caused or exacerbated by oxidative damage, we investigated the effects of subacute treatment with the antioxidant quercetin on tissue antioxidant defense systems in streptozotocin-induced diabetic Sprague-Dawley rats (30 days after streptozotocin induction). Quercetin, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one, was administered at a dose of 10mg/kg/day, ip for 14 days, after which liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Treatment of normal rats with quercetin increased serum AST and increased hepatic concentration of oxidized glutathione. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Quercetin treatment of diabetic rats reversed only the diabetic effects on brain oxidized glutathione concentration and on hepatic glutathione peroxidase activity. By contrast, a 20% increase in hepatic lipid peroxidation, a 40% decline in hepatic glutathione concentration, an increase in renal (23%) and cardiac (40%) glutathione peroxidase activities, and a 65% increase in cardiac catalase activity reflect intensified diabetic effects after treatment with quercetin. These results call into question the ability of therapy with the antioxidant quercetin to reverse diabetic oxidative stress in an overall sense. © 2001 John Wiley & Sons, Inc. J Biochem Mol Toxicol 15:143,149, 2001 [source] Protective effect of melatonin against oxidative stress induced by ligature of extra-hepatic biliary duct in rats: comparison with the effect of S-adenosyl- l -methionineJOURNAL OF PINEAL RESEARCH, Issue 3 2000Pedro Montilla López In the present research, we studied the effect of the administration of melatonin or S-adenosyl- l -methionine (S-AMe) on oxidative stress and hepatic cholestasis produced by double ligature of the extra-hepatic biliary duct (LBD) in adult male Wistar rats. Hepatic oxidative stress was evaluated by the changes in the amount of lipid peroxides and by the reduced glutathione content (GSH) in lysates of erythrocytes and homogenates of hepatic tissue. The severity of the cholestasis and hepatic injury were determined by the changes in the plasma enzyme activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AP), g-glutamyl-transpeptidase (GGT), and levels of albumin, total bilirubin (TB) and direct bilirubin (DB). Either melatonin or S-AMe were administered daily 3 days before LBD, and for 10 days after biliary obstruction. LDB caused highly significant increases in plasma enzyme activities and in bilirubin and lipid peroxides levels in erythrocytes and hepatic tissue. At the same time, this procedure produced a notable decrease in the GSH pools in these biological media. Both melatonin and S-AMe administration were effective as antioxidants and hepatoprotective substances, although the protective effects of melatonin were superior; it prevented the GSH decrease and reduced significantly the increases in enzyme activities and lipid peroxidation products produced by biliary ligature. S-AMe did not modify the increased GGT activity nor did it decrease greatly the TB levels (43% melatonin vs. 14% S-AMe). However, S-AMe was effective in preventing the loss of GSH in erythrocytes and hepatic tissue, as was melatonin. The obtained data permit the following conclusions. First, the LDB models cause marked hepatic oxidative stress. Second, the participation of free radicals of oxygen in the pathogenecity and severity of cholestasis produced by the acute obstruction of the extra-hepatic biliary duct is likely. Third, the results confirm the function of S-AMe as an antioxidant and hepatoprotector. Finally, melatonin is far more potent and provides superior protection as compared to S-AMe. Considering the decrease in oxidative stress and the intensity of cholestasis, these findings have interesting clinical implications for melatonin as a possible therapeutic agent in biliary cholestasis and parenchymatous liver injury. [source] Assessment of carcinogenic potential of repeated fish fried oil in miceMOLECULAR CARCINOGENESIS, Issue 10 2006Manoj K. Pandey Abstract Our prior studies have shown that single topical treatment of repeated fish fried oil extract (RFFE), containing various polycyclic aromatic hydrocarbons (PAHs), to the dorsal epidermis of mice caused enhancement of DNA damage along with higher expression of p53 and p21WAF1 proteins and cell-cycle arrest. In the present study carcinogenic potential of repeated fish fried oil (RFFO) and RFFE was assessed. Single topical application of RFFO (100 µL/animal) and RFFE (100,500 µg/animal) to Swiss albino female mice resulted in significant induction (1.8- to 7.4-fold) of ornithine decarboxylase activity. Twice weekly topical application of methylcholanthrene (MCA) for 24 wk or single topical application of 7,12-dimethylbenzanthracene (DMBA) or RFFO or RFFE, as initiator followed by twice weekly application of 12-O-tetradecanoyl phorbol myristate acetate (TPA) as promoter for 24 wk, resulted in development of skin papillomas after 6, 7, 18, and 9 wk, respectively. The cumulative number of tumors in MCA, DMBA/TPA, RFFE (200 µg)/TPA, and RFFE (500 µg)/TPA groups were 276, 168, 34, and 58 after 24 wk while negligible or minimal initiating activity was noticed in RFFO/TPA group. No tumors were found in animals either given twice weekly topical application of RFFO or a single initiating dose of DMBA followed by twice weekly application of RFFO. Histopathology of skin of animals treated with RFFE/TPA showed marked proliferation of epidermal layers along with abnormal mitosis and multinucleated tumor appearance. Skin of animals in groups RFFO/TPA and DMBA/RFFO showed sloughing and regeneration of epidermal layers, oedema along with proliferation of fibroblasts. Histochemical localization of ,-glutamyl transpeptidase was found to be substantially higher in skin of mice treated with RFFO/TPA and RFFE/TPA. Animals treated with RFFO/TPA, DMBA/RFFO, and RFFE/TPA resulted in significant induction of cutaneous aryl hydrocarbon hydroxylase (AHH) (421,432%), ethoxyresorufin-O-deethylase (252,316%), and glutathione S-transferase (133,245%) activities. Animals treated with RFFO/TPA, DMBA/RFFO, and RFFE/TPA led to significant reduction in glutathione content (39,44%) with a concomitant increase in lipid peroxidation (254,492%). Animals treated with RFFO/TPA and RFFE/TPA led a significant decrease in catalase (43,69%) and superoxide dismutase (20,31%) activities while glutathione reductase activity was found to be diminished (23,51%) in RFFO, RFFO/TPA, DMBA/RFFO, and RFFE/TPA treated groups. These results suggest that RFFE possess skin tumor initiating activity and that it may have weak promoting activity as well, which may involve free radicals. © 2006 Wiley-Liss, Inc. [source] Inhibition of UVB-mediated Oxidative Stress and Markers of Photoaging in Immortalized HaCaT Keratinocytes by Pomegranate Polyphenol Extract POMxPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007Mohammad Abu Zaid In recent years there has been an increase in use of botanicals with antioxidant properties as skin photoprotective agents. Pomegranate (Punica granatum L.) fruit possesses strong antioxidant and antiinflammatory properties. Recently, we have shown that pomegranate-derived products rich in anthocyanidins and ellagitannins inhibit UVB-mediated activation of nuclear factor kappa B and modulate UVA-mediated cell proliferation pathways in normal human epidermal keratinocytes. In this study, we evaluated the effect of polyphenol-rich pomegranate fruit extract (POMx) on UVB-induced oxidative stress and photoaging in human immortalized HaCaT keratinocytes. Our data show that pretreatment of HaCaT cells with POMx (10,40 ,g mL,1) inhibited UVB (15,30 mJ cm,2)-mediated (1) decrease in cell viability, (2) decrease in intracellular glutathione content and (3) increase in lipid peroxidation. Employing immunoblot analysis we found that pretreatment of HaCaT cells with POMx inhibited UVB-induced (1) upregulation of MMP-1, -2, -7 and -9, (2) decrease in TIMP-1, (3) phosphorylation of MAPKs and (iv) phosphorylation of c-jun, whereas no effect was observed on UVB-induced c-fos protein levels. These results suggest that POMx protects HaCaT cells against UVB-induced oxidative stress and markers of photoaging and could be a useful supplement in skin care products. [source] Salt- and glyphosate-induced increase in glyoxalase I activity in cell lines of groundnut (Arachis hypogaea)PHYSIOLOGIA PLANTARUM, Issue 4 2002Mukesh Jain Glyoxalase I (EC 4.4.1.5) activity has long been associated with rapid cell proliferation, but experimental evidence is forthcoming, linking its role to stress tolerance as well. Proliferative callus cultures of groundnut (Arachis hypogaea L. cv. JL24) showed a 3.3-fold increase in glyoxalase I activity during the logarithmic growth phase, correlating well with the data on FW gain and mitotic index. Inhibition of cell division decreased glyoxalase I activity and vice versa, thus further corroborating its role as a cell division marker enzyme. Cell lines of A. hypogaea selected in the presence of high salt (NaCl) and herbicide (glyphosate) concentrations, yielded 4.2- to 4.5-fold and 3.9- to 4.6-fold elevated glyoxalase I activity, respectively, in a dose dependent manner reflective of the level of stress tolerance. The stress-induced increase in enzyme activity was also accompanied by an increase in the glutathione content. Exogenous supplementation of glutathione could partially alleviate the growth inhibition of callus cultures induced by methylglyoxal and d -isoascorbic acid, but failed to recover the loss in glyoxalase I activity due to d -isoascorbic acid. The adaptive significance of elevated glyoxalase I activity in maintaining glutathione homeostasis has been discussed in view of our understanding on the role of glutathione in the integration of cellular processes with plant growth and development under stress conditions. [source] Erythrocyte Susceptibility to Oxidative Stress in Chronic Renal Failure Patients Under Different Substitutive TreatmentsARTIFICIAL ORGANS, Issue 1 2005Leonardo Lucchi Abstract:, An increased oxidative stress is now considered one of the major risk factors in chronic renal failure (CRF) patients that may be exacerbated by dialysis. It has been postulated that this increased oxidative stress might cause an augmented red blood cell (RBC) membrane lipid peroxidation with the consequent alteration in membrane deformability. The aim of this study was to evaluate RBC susceptibility to an in vitro induced oxidative stress and RBC antioxidant potential in different groups of CRF patients undergoing different substitutive treatment modalities. Fifteen end-stage CRF patients were evaluated in conservative treatment, 23 hemodialysis (HD) patients, 15 continuous ambulatory peritoneal dialysis (CAPD) patients, 15 kidney transplanted patients, and 16 controls. Their RBCs were incubated with the oxidative stress-inducing agent tert-butylhydroperoxide both in the presence and in the absence of the catalase inhibitor sodium azide, and the level of malondialdehyde (MDA) (a product of lipid peroxidation), was measured at 0, 5, 10, 15, and 30 min of incubation. In addition, the RBC content of reduced glutathione (GSH) was measured by HPLC. As opposed to the controls, RBCs from end-stage CRF patients exhibited an increased sensitivity to oxidative stress induced in vitro, both in the absence and presence of a catalase inhibitor, as demonstrated by a significantly higher level of MDA production at all the incubation times (P < 0.05). Different substitutive treatments had different impacts on this phenomenon; CAPD and kidney transplantation were able to normalize this alteration while HD was not. GSH appeared to be related to the increase in RBC susceptibility to oxidative stress; its content being significantly elevated in end-stage CRF and HD patients as compared with CAPD and transplanted patients and controls (P < 0.05). No significant changes were observed in the RBC glutathione content during the HD session. The increase of GSH in RBCs of end-stage CRF and HD patients seems to indicate the existence of an adaptive mechanism under increased oxidative stress occurring in vivo. Unlike HD, the beneficial effect of CAPD on the anemia of dialysis patients might partly be due to a condition of lower oxidative stress that might in addition counterbalance the cardiovascular negative effects of dislipidemia ,of, CAPD, patients. [source] Tephrosia purpurea Ameliorates N-Diethylnitrosamine and Potassium Bromate-Mediated Renal Oxidative Stress and Toxicity in Wistar RatsBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 6 2001Naghma Khan 1999). The present study was designed to investigate a chemopreventive efficacy of T. purpurea against N-diethylnitrosamine-initiated and potassium bromate-mediated oxidative stress and toxicity in rat kidney. A single intraperitoneal dose of N-diethylnitrosamine (200 mg/kg body weight) one hr prior to the dose of KBrO3 (125 mg/kg body weight) increases microsomal lipid peroxidation and the activity of xanthine oxidase and decreases the activities of renal antioxidant enzymes viz., catalase, glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase, phase II metabolizing enzymes such as glutathione-S-transferase and quinone reductase and causes depletion in the level of renal glutathione content. A sharp increase in blood urea nitrogen and serum creatinine has also been observed. Prophylactic treatment of rats with T. purpurea at doses of 5 mg/kg body weight and 10 mg/kg body weight prevented N-diethylnitrosamine-initiated and KBrO3 promoted renal oxidative stress and toxicity. The susceptibility of renal microsomal membrane for iron ascorbate-induced lipid peroxidation and xanthine oxidase activities were significantly reduced (P<0.01). The depleted levels of glutathione, the inhibited activities of antioxidant enzymes, phase II metabolizing enzymes and the enhanced levels of serum creatinine and blood urea nitrogen were recovered to a significant level (P<0.01). All the antioxidant enzymes were recovered dose-dependently. Our data indicate that T. purpurea besides a skin antioxidant can be a potent chemopreventive agent against renal oxidative stress and carcinogenesis induced by N-diethylnitrosamine and KBrO3. [source] The protective and healing effects of a natural antioxidant formulation based on ubiquinol and Aloe vera against dextran sulfate-induced ulcerative colitis in ratsBIOFACTORS, Issue 1-4 2003Ludmila Korkina Abstract Oxygen/nitrogen reactive species (ROS/RNS) are currently implicated in the pathogenesis of ulcerative colitis, drawing attention on the potential prophylactic and healing properties of antioxidants, scavengers, chelators. We evaluated the possible protective/curative effects of a natural antioxidant preparation based on Aloe vera and ubiquinol, against intestinal inflammation, lesions, and pathological alterations of the intestinal electrophysiological activity and motility, in a rat model of DSS-induced colitis. 5% dextrane sulfate (DDS) (3 days), followed by 1% DSS (4 days) was administered in drinking water. The antioxidant formulation (25 mg/kg) was delivered with a pre-treatment protocol, or simultaneously or post-colitis induction. Spontaneous and acetylcholine-stimulated electrical activity were impaired in the small intestine and in distal colon, upon exposure to DSS only. Severe inflammation occurred, with increased myeloperoxidase activity, and significant alterations of the oxidant/antioxidant status in colonic tissue and peritoneal cells. Lipoperoxidation, superoxide production, glutathione peroxidase and glutathione-S-transferase activities, and reduced glutathione content increased, whilst superoxide dismutase and catalase activities were sharply suppressed in colon tissue. ROS/RNS formation in peritoneal cells was strongly inhibited. Inflammation, electrical/mechanical impairment in the gut, and a great majority of oxidative stress parameters were improved substantially by pre-treatment with the antioxidant preparation, but not by simultaneous administration or post-treatment. [source] Rifampicin exacerbates isoniazid-induced toxicity in human but not in rat hepatocytes in tissue-like culturesBRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2008C Shen Background and purpose: Rifampicin has been extensively reported to exacerbate the hepatotoxicity of isoniazid in patients with tuberculosis. However, this was controversially claimed by previous reports using rat models. This study evaluated the effect of rifampicin on isoniazid-induced hepatocyte toxicity by using human and rat hepatocytes in tissue-like culture. Experimental approach: Hepatocytes in tissue-like gel entrapment were used to examine isoniazid toxicity, as shown by cell viability, intracellular glutathione content and albumin secretion. For demonstration of the differential effects of rifampicin on human and rat hepatocytes, induction by rifampicin of cytochrome P450 (CYP) 2E1, a major enzyme associated with isoniazid hepatotoxicity, was detected by 4-nitrocatechol formation and RT-PCR analysis. Key results: Rifampicin (12 ,M) enhanced isoniazid-induced toxicity in human hepatocytes but not in rat hepatocytes. Enhanced CYP 2E1 enzymic activity and mRNA expression were similarly detected in human hepatocytes but not in rat hepatocytes. Both rat and human hepatocytes in gel entrapment were more sensitive to isoniazid treatment compared with the corresponding hepatocytes in a monolayer culture. Conclusions and implications: The difference in induction of CYP 2E1 by rifampicin between rat and human hepatocytes accounted for the difference in exacerbation of isoniazid hepatocyte toxicity by rifampicin, with more significant toxicity in gel entrapment than in monolayer cultures. Thus, human hepatocytes in tissue-like cultures (gel entrapment) could be an effective model for hepatotoxicity research in vitro, closer to the in vivo situation. British Journal of Pharmacology (2008) 153, 784,791; doi:10.1038/sj.bjp.0707611; published online 10 December 2007 [source] Relationship between anti-oxidant activities and doxorubicin-induced lipid peroxidation in P388 tumour cells and heart and liver in miceCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 3 2003Qi-Yuan Liu Summary 1.,The present study found that, compared with mouse heart and liver, P388 ascitic tumour had significantly lower superoxide dismutase (SOD) activity and that compared with the mouse liver, the heart had significantly lower SOD and catalase activities, as well as a lower glutathione content. 2.,At 7.5 mg/kg, doxorubicin (DOX), a superoxide radical inducer, induced significant lipid peroxidation only in the tumour, whereas 15.0 mg/kg DOX induced lipid peroxidation in both the tumour and heart, but not in the liver. 3.,Overall, the results of the present study suggest that the differential anti-oxidant activities in P388 ascitic tumour, heart and liver in mice may explain their differential responses and, hence, susceptibility to DOX-induced lipid peroxidation. [source] Microglial glutamate uptake is coupled to glutathione synthesis and glutamate releaseEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2006Mikael Persson Abstract The physiological function of microglial glutamate uptake has been debated as it is about 10% of that measured for astrocytes. This study addresses how glutamate, taken up from the extracellular space, is utilized by microglia. It was found that purified rat microglia incubated for 60 min with 3H-glutamate had an increased intracellular accumulation of 3H-glutamate after 12 h incubation with tumour necrosis factor alpha (TNF-,) but not after incubation with lipopolysaccharide (LPS). Furthermore, LPS- but not TNF-,-treated cells showed an increased efflux of 3H-labelled compounds, presumably glutamate through the XC, system and treatment with LPS or TNF-, increased the microglial glutathione concentrations and led to an increased incorporation of 3H-glutamate into glutathione. Depending on the stimuli, 3,6% of the total labelled contents were found in the form of glutathione and 25,35% in the form of glutamate. These results show that microglial glutamate uptake is directly coupled to glutathione synthesis and release of glutamate and/or glutamate metabolites. Additionally, the increased glutathione contents after LPS or TNF-, treatment were able to reduce microglial cell death after H2O2 challenge, showing a potential (self)-protective function for microglial glutamate transporter expression and glutathione synthesis. [source] Attenuation of TCDD-induced oxidative stress by 670 nm photobiomodulation in developmental chicken kidneyJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 4 2008Jinhwan Lim 2,3,7,8-Tetrachlorodibenzo- p -dioxin (TCDD), a potent developmental teratogen inducing oxidative stress and sublethal changes in multiple organs, provokes developmental renal injuries. In this study, we investigated TCDD-induced biochemical changes and the therapeutic efficacy of photobiomodulation (670 nm; 4 J/cm2) on oxidative stress in chicken kidneys during development. Eggs were injected once prior to incubation with TCDD (2 pg/g or 200 pg/g) or sunflower oil vehicle control. Half of the eggs in each dose group were then treated with red light once per day through embryonic day 20 (E20). Upon hatching at E21, the kidneys were collected and assayed for glutathione peroxidase, glutathione reductase, catalase, superoxide dimutase, and glutathione- S -transferase activities, as well as reduced glutathione and ATP levels, and lipid peroxidation. TCDD exposure alone suppressed the activity of the antioxidant enzymes, increased lipid peroxidation, and depleted available ATP. The biochemical indicators of oxidative and energy stress in the kidney were reversed by daily phototherapy, restoring ATP and glutathione contents and increasing antioxidant enzyme activities to control levels. Photobiomodulation also normalized the level of lipid peroxidation increased by TCDD exposure. The results of this study suggest that 670 nm photobiomodulation may be useful as a noninvasive treatment for renal injury resulting from chemically induced cellular oxidative and energy stress. © 2008 Wiley Periodicals, Inc. J Biochem Mol Toxicol 22:230,239, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20233 [source] Changes in the levels of glutathione after cellular and cutaneous damage induced by squalene monohydroperoxideJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 3 2001Katsuyoshi Chiba Abstract Squalene monohydroperoxide (Sq-OOH), the initial product of ultraviolet-peroxidated squalene, was used to investigate the effect of peroxidative challenge upon the glutathione contents in rabbit ear skin and primary-cultured fibroblasts derived from rabbit ear skin. The cellular reduced glutathione (GSH) contents decreased during 30-minute incubations in vitro with Sq-OOH, and oxidized glutathione (GSSG) was formed concomitantly, indicating that Sq-OOH had a potential for GSH-depleting activity in vitro. When Sq-OOH was applied topically to the skin in vivo, only GSSG contents increased significantly within 30 minutes. Moreover, pretreatment with the GSH depletors, DL -buthionine sulfoximine (BSO) and diethyl maleate (DEM), could potentiate the cytotoxicity and comedogenicity induced by Sq-OOH. These findings suggest that the endogenous antioxidant, glutathione, is quite sensitive to Sq-OOH and may be an important material for protecting cells and/or tissues against the oxidative stress induced by Sq-OOH treatment. © 2001 John Wiley & Sons, Inc. J Biochem Mol Toxicol 15:150,158, 2001 [source] Yin-Chen-Hao-Tang ameliorates obstruction-induced hepatic apoptosis in ratsJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 4 2007Tzung-Yan Lee The accumulation of hydrophobic bile acids in the liver is considered to play a pivotal role in the induction of apoptosis of hepatocytes during cholestasis. Thus, factors that affect apoptosis may be used to modulate liver fibrosis. Yin-Chen-Hao-Tang (YCHT) decoctions have been recognised as a hepatoprotective agent for jaundice and various types of liver diseases. We used an experimental rat model of bile-duct ligation (BDL) to test whether YCHT plays a regulatory role in the pathogenesis of hepatic apoptosis. BDL-plus-YCHT groups received 250 or 500 mg kg,1 YCHT by gavage once daily for 27 days. YCHT significantly ameliorated the portal hypertensive state and serum TNF-, compared with the vehicle-treated control group. In BDL-plus-YCHT-treated rats, hepatic glutathione contents were significantly higher than than in BDL-only rats. BDL caused a prominent liver apoptosis that was supported by an increase in Bax and cytochrome c protein and increased expression of Bax and Bcl-2 messenger RNA. The normalising effect of YCHT on expression of Bax and Bcl-2 mRNA was dependent on the dose of YCHT, 500 mg kg,1 having the greater effect on both Bax and Bcl-2 of mRNA levels. Additionally, YCHT treatment down-regulated both hepatic caspase-3 and ,8 activities of BDL rats. This study demonstrates the anti-apoptotic properties of YCHT and suggests a potential application of YCHT in the clinical management of hepatic disease resulting from biliary obstruction. [source] Chemomodulatory effects of Azadirachta indica on the hepatic status of skin tumor bearing micePHYTOTHERAPY RESEARCH, Issue 3 2006Ashwani Koul Abstract The liver plays an important role in the modulation of the process of carcinogenesis, as it is the primary site for the biotransformation of xenobiotics including carcinogens as well as anticancer drugs. The present study was designed to evaluate the biochemical alterations occurring in the liver of 7,12-dimethylbenz(a)anthracene (DMBA) induced skin tumor bearing male Balb/c mice and their modulation by aqueous Azadirachta indica leaf extract (AAILE). It was observed that skin tumor induction caused hepatic damage characterized by a decreased hepatosomatic index and significantly increased (p < 0.001) activities of the hepatic tissue injury marker enzymes, namely alkaline phosphatase, alanine aminotransferase and aspartate aminotransferase. However, upon treatment with AAILE, the above-mentioned alterations, including the increased activities of hepatic tissue injury marker enzymes, were significantly reversed, which signified the hepato-protective efficacy of Azadirachta indica. Increased oxidative stress was also observed in the hepatic tissue of skin tumor bearing mice as revealed by a significant increase (p < 0.001) in lipid peroxidation levels and a decrease in reduced glutathione contents and activities of various antioxidant enzymes studied, namely glutathione-S-transferase, glutathione peroxidase and glutathione reductase. The AAILE treatment reduced oxidative stress by decreasing lipid peroxidation levels and enhancing the reduced glutathione contents and activities of various antioxidant enzymes. The activities of the xenobiotic biotransformation enzymes, namely cytochrome P450, cytochrome b5 and glutathione-S-transferase, were found to be decreased in the hepatic tissue of tumor bearing mice. Treatment with AAILE further caused a decrease in the activity of cytochrome P450 and cytochrome b5, whereas it up-regulated the activity of glutathione-S-transferase. The significance of these observations with respect to the progress of the process of carcinogenesis is explained in the present research article. Copyright © 2006 John Wiley & Sons, Ltd. [source] Characterisation and changes in the antioxidant system of chloroplasts and chromoplasts isolated from green and mature pepper fruitsPLANT BIOLOGY, Issue 4 2009M. C. Martí Abstract Purification and characterisation of pepper (Capsicum annuum L) chloroplasts and chromoplasts isolated from commercial green, red and yellow mature fruits were undertaken. Induction of the synthesis of several antioxidants in organelles isolated from mature fruits was found. The ultrastructure of organelles and the presence and activity of SOD isozymes and enzymes involved in the ASC-GSH cycle, together with the non-enzymatic antioxidant content and some oxidative parameters, were analysed. It was found that lipids, rather than proteins, seem to be a target for oxidation in the chromoplasts. The ascorbate and glutathione contents were elicited during differentiation of chloroplasts into chromoplasts in both red and yellow fruits. The activity of SOD and of components of the ASC-GSH cycle was up-regulated, suggesting that these enzymes may play a role in the protection of plastids and could act as modulators of signal molecules such as O2,, and H2O2 during fruit maturation. The presence of an Mn-SOD in chromoplasts isolated from yellow pepper fruits was also investigated in terms of structural and antioxidant differences between the two cultivars. [source] |