Home About us Contact | |||
Glutamate Application (glutamate + application)
Selected AbstractsGlutamate-induced elevations in intracellular chloride concentration in hippocampal cell cultures derived from EYFP-expressing miceEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2004Jennifer E. Slemmer Abstract The homeostasis of intracellular Cl, concentration ([Cl,]i) is critical for neuronal function, including ,-aminobutyric acid (GABA)ergic synaptic transmission. Here, we investigated activity-dependent changes in [Cl,]i using a transgenetically expressed Cl, -sensitive enhanced yellow-fluorescent protein (EYFP) in cultures of mouse hippocampal neurons. Application of glutamate (100 µm for 3 min) in a bath perfusion to cell cultures of various days in vitro (DIV) revealed a decrease in EYFP fluorescence. The EYFP signal increased in amplitude with increasing DIV, reaching a maximal response after 7 DIV. Glutamate application resulted in a slight neuronal acidification. Although EYFP fluorescence is sensitive to pH, EYFP signals were virtually abolished in Cl, -free solution, demonstrating that the EYFP signal represented an increase in [Cl,]i. Similar to glutamate, a rise in [Cl,]i was also induced by specific ionotropic glutamate receptor agonists and by increasing extracellular [K+], indicating that an increase in driving force for Cl, suffices to increase [Cl,]i. To elucidate the membrane mechanisms mediating the Cl, influx, a series of blockers of ion channels and transporters were tested. The glutamate-induced increase in [Cl,]i was resistant to furosemide, bumetanide and 4,4,-diisothiocyanato-stilbene-2,2,-disulphonic acid (DIDS), was reduced by bicuculline to about 80% of control responses, and was antagonized by niflumic acid (NFA) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). We conclude that membrane depolarization increases [Cl,]i via several pathways involving NFA- and NPPB-sensitive anion channels and GABAA receptors, but not through furosemide-, bumetanide- or DIDS-sensitive Cl, transporters. The present study highlights the vulnerability of [Cl,]i homeostasis after membrane depolarization in neurons. [source] Tissue-type plasminogen activator-plasmin-BDNF modulate glutamate-induced phase-shifts of the mouse suprachiasmatic circadian clock in vitroEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2009Xiang Mou Abstract The mammalian circadian clock in the suprachiasmatic nucleus (SCN) maintains environmental synchrony through light signals transmitted by glutamate released from retinal ganglion terminals. Brain-derived neurotrophic factor (BDNF) is required for light/glutamate to reset the clock. In the hippocampus, BDNF is activated by the extracellular protease, plasmin, which is produced from plasminogen by tissue-type plasminogen activator (tPA). We provide data showing expression of proteins from the plasminogen activation cascade in the SCN and their involvement in circadian clock phase-resetting. Early night glutamate application to SCN-containing brain slices resets the circadian clock. Plasminogen activator inhibitor-1 (PAI-1) blocked these shifts in slices from wild-type mice but not mice lacking its stabilizing protein, vitronectin (VN). Plasmin, but not plasminogen, prevented inhibition by PAI-1. Both plasmin and active BDNF reversed ,2 -antiplasmin inhibition of glutamate-induced shifts. ,2 -Antiplasmin decreased the conversion of inactive to active BDNF in the SCN. Finally, both tPA and BDNF allowed daytime glutamate-induced phase-resetting. Together, these data are the first to demonstrate expression of these proteases in the SCN, their involvement in modulating photic phase-shifts, and their activation of BDNF in the SCN, a potential ,gating' mechanism for photic phase-resetting. These data also demonstrate a functional interaction between PAI-1 and VN in adult brain. Given the usual association of these proteins with the extracellular matrix, these data suggest new lines of investigation into the locations and processes modulating mammalian circadian clock phase-resetting. [source] Glutamate-mediated influx of extracellular Ca2+ is coupled with reactive oxygen species generation in cultured hippocampal neurons but not in astrocytesJOURNAL OF NEUROSCIENCE RESEARCH, Issue 1-2 2005Stefan Kahlert Abstract Generation of reactive oxygen species (ROS) in brain tissue leads to neurodegeneration. The major source of ROS is the mitochondrial respiratory chain. We studied regulation of Ca2+ level, mitochondrial potential, and ROS generation in defined mixed hippocampal cell cultures exposed to glutamate (100 ,M). Recordings were made from individually identified astrocytes and neurons to compare the physiologic responses in both cell types. Neurons identified by synaptotagmin immunoreactivity were characterized functionally by the fast Ca2+ increase with K+ (50 mM) stimulation, and the astrocytes identified by glial fibrillary acidic protein (GFAP) staining had the functional characteristic of a transient Ca2+ peak in response to ATP (10 ,M) stimulation. We found that the glutamate-mediated Ca2+ response in neurons is due largely to influx of extracellular Ca2+. This is consistent with our finding that in cultured hippocampal neurons, stores depending on the activity of the sarcoendoplasmic reticulum Ca2+ ATPase (SERCA) pump had a low Ca2+ content, regardless of whether the neurons were challenged or not with K+ before applying the SERCA inhibitor cyclopiazonic acid (CPA). Astrocytes displayed a large CPA-mediated Ca2+ response, indicating a high level of Ca2+ load in the stores in astrocytes. Importantly, the rise in ROS generation due to glutamate application was cell-type specific. In neurons, glutamate induced a marked rise in generation of ROS, but not in astrocytes. In both astrocytes and neurons, the mitochondrial potential was increased in response to glutamate challenge. We conclude that in neurons, Ca2+ influx accounts for the increased ROS generation in response to glutamate. This might explain the high vulnerability of neurons to glutamate challenge compared to the vulnerability of astrocytes. The high resistance of astrocytes is accompanied by an efficient downregulation of cytosolic Ca2+, which is not found in neurons. © 2004 Wiley-Liss, Inc. [source] Postsynaptic calcium contributes to reinforcement in a three-neuron network exhibiting associative plasticityEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2004P. M. Balaban Abstract We show that activation of a single serotonergic cell is sufficient to trigger long-term associative enhancement of synaptic input to the withdrawal interneuron in a simple network consisting of three interconnected identified cells in the nervous system of terrestrial snail Helix. 1,2-bis (2-aminophenoxy) Ethane- N,N,N,,N,-tetraacetic acid (BAPTA) injection in the postsynaptic neuron abolishes the pairing-specific enhancement of synaptic input. Activation of a single modulatory cell that we used to reinforce the synaptic input induced an increase of the intracellular [Ca2+] in the ipsilateral withdrawal interneuron without any changes of its membrane potential or input resistance. Similar changes in intracellular [Ca2+] were observed in the same withdrawal interneuron under bath application of 10,5 m serotonin. Responses to repeated glutamate applications to the soma of synaptically isolated withdrawal interneurons increased after 10 min of serotonin or thapsigargin bath application, but were absent in conditions of preliminary BAPTA intracellular injection, significantly decreased under heparin injection. Thus, activity of a single modulatory cell may mediate reinforcement via an increase of [Ca2+] in the postsynaptic cell in a simple network consisting of neurons with defined behavioural roles. [source] |