Glucose Turnover (glucose + turnover)

Distribution by Scientific Domains


Selected Abstracts


Abnormalities of whole body protein turnover, muscle metabolism and levels of metabolic hormones in patients with chronic heart failure

JOURNAL OF INTERNAL MEDICINE, Issue 1 2006
H. NØRRELUND
Abstract. Objective., It is well known that chronic heart failure (CHF) is associated with insulin resistance and cachexia, but little is known about the underlying substrate metabolism. The present study was undertaken to identify disturbances of basal glucose, lipid and protein metabolism. Design., We studied eight nondiabetic patients with CHF (ejection fraction 30 ± 4%) and eight healthy controls. Protein metabolism (whole body and regional muscle fluxes) and total glucose turnover were isotopically assayed. Substrate oxidation were obtained by indirect calorimetry. The metabolic response to exercise was studied by bicycle ergometry exercise. Results., Our data confirm that CHF patients have a decreased lean body mass. CHF patients are characterised by (i) decreased glucose oxidation [glucose oxidation (mg kg,1 min,1): 1.25 ± 0.09 (patients) vs. 1.55 ± 0.09 (controls), P < 0.01] and muscle glucose uptake [a , v diffglucose (,mol L,1): ,10 ± 25 (patients) vs. 70 ± 22 (controls), P < 0.01], (ii) elevated levels of free fatty acids (FFA) [FFA (mmol L,1): 0.72 ± 0.05 (patients) vs. 0.48 ± 0.03 (controls), P < 0.01] and 3-hydroxybutyrate and signs of elevated fat oxidation and muscle fat utilization [a , v diffFFA (mmol L,1): 0.12 ± 0.02 (patients) vs. 0.05 ± 0.01 (controls), P < 0.05] and (iii) elevated protein turnover and protein breakdown [phenylalanine flux (,mol kg,1 h,1): 36.4 ± 1.5 (patients) vs. 29.6 ± 1.3 (controls), P < 0.01]. Patients had high circulating levels of noradrenaline, glucagon, and adiponectin, and low levels of ghrelin. We failed to observe any differences in metabolic responses between controls and patients during short-term exercise. Conclusions., In the basal fasting state patients with CHF are characterized by several metabolic abnormalities which may contribute to CHF pathophysiology and may provide a basis for targeted intervention. [source]


The effect of DPP-4 inhibition with sitagliptin on incretin secretion and on fasting and postprandial glucose turnover in subjects with impaired fasting glucose

CLINICAL ENDOCRINOLOGY, Issue 2 2010
Gerlies Bock
Summary Objective, Low glucagon-like peptide-1 (GLP-1) concentrations have been observed in impaired fasting glucose (IFG). It is uncertain whether these abnormalities contribute directly to the pathogenesis of IFG and impaired glucose tolerance. Dipeptidyl peptidase-4 (DPP-4) inhibitors raise incretin hormone concentrations enabling an examination of their effects on glucose turnover in IFG. Research design and methods, We studied 22 subjects with IFG using a double-blinded, placebo-controlled, parallel-group design. At the time of enrolment, subjects ate a standardized meal labelled with [1- 13C]-glucose. Infused [6- 3H] glucose enabled measurement of systemic meal appearance (MRa). Infused [6,6- 2H2] glucose enabled measurement of endogenous glucose production (EGP) and glucose disappearance (Rd). Subsequently, subjects were randomized to 100 mg of sitagliptin daily or placebo. After an 8-week treatment period, the mixed meal was repeated. Results, As expected, subjects with IFG who received placebo did not experience any change in glucose concentrations. Despite raising intact GLP-1 concentrations, treatment with sitagliptin did not alter either fasting or postprandial glucose, insulin or C-peptide concentrations. Postprandial EGP (18·1 ± 0·7 vs 17·6 ± 0·8 ,mol/kg per min, P = 0·53), Rd (55·6 ± 4·3 vs 58·9 ± 3·3 ,mol/kg per min, P = 0·47) and MRa (6639 ± 377 vs 6581 ± 316 ,mol/kg per 6 h, P = 0·85) were unchanged. Sitagliptin was associated with decreased total GLP-1 implying decreased incretin secretion. Conclusions, DPP-4 inhibition did not alter fasting or postprandial glucose turnover in people with IFG. Low incretin concentrations are unlikely to be involved in the pathogenesis of IFG. [source]