Home About us Contact | |||
Glucose Conversion (glucose + conversion)
Selected AbstractsIncreased glucose metabolism and ATP level in brain tissue of Huntington's disease transgenic miceFEBS JOURNAL, Issue 19 2008Judit Oláh Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by multifarious dysfunctional alterations including mitochondrial impairment. In the present study, the formation of inclusions caused by the mutation of huntingtin protein and its relationship with changes in energy metabolism and with pathological alterations were investigated both in transgenic and 3-nitropropionic acid-treated mouse models for HD. The HD and normal mice were characterized clinically; the affected brain regions were identified by immunohistochemistry and used for biochemical analysis of the ATP-producing systems in the cytosolic and the mitochondrial compartments. In both HD models, the activities of some glycolytic enzymes were somewhat higher. By contrast, the activity of glyceraldehyde-3-phosphate dehydrogenase was much lower in the affected region of the brain compared to that of the control. Paradoxically, at the system level, glucose conversion into lactate was enhanced in cytosolic extracts from the HD brain tissue, and the level of ATP was higher in the tissue itself. The paradox could be resolved by taking all the observed changes in glycolytic enzymes into account, ensuing an experiment-based detailed mathematical model of the glycolytic pathway. The mathematical modelling using the experimentally determined kinetic parameters of the individual enzymes and the well-established rate equations predicted the measured flux and concentrations in the case of the control. The same mathematical model with the experimentally determined altered Vmax values of the enzymes did account for an increase of glycolytic flux in the HD sample, although the extent of the increase was not predicted quantitatively. This suggested a somewhat altered regulation of this major metabolic pathway in HD tissue. We then used the mathematical model to develop a hypothesis for a new regulatory interaction that might account for the observed changes; in HD, glyceraldehyde-3-phosphate dehydrogenase may be in closer proximity (perhaps because of the binding of glyceraldehyde-3-phosphate dehydrogenase to huntingtin) with aldolase and engage in channelling for glyceraldehyde-3-phosphate. By contrast to most of the speculation in the literature, our results suggest that the neuronal damage in HD tissue may be associated with increased energy metabolism at the tissue level leading to modified levels of various intermediary metabolites with pathological consequences. [source] In vivo metabolic effects of naringenin in the ethanol consuming rat and the effect of naringenin on adipocytes in vitroJOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 3-4 2007K. Szkudelska Summary Naringenin is a bioactive flavanone involved in the inhibition of drug metabolism which exhibits antioxidant, anti-inflammatory and anticancerogenic properties and which recently appeared to be a factor mitigating the hyperlipidaemic effects in rats and rabbits. In the performed experiment, the effect of naringenin, administered intragastrically (50 mg/kg) for 2 weeks to normal and ethanol drinking rats, on insulin and leptin levels and on some metabolic parameters was investigated. Naringenin did not change the hormone levels in any group of rats. Blood glucose, triglyceride, total, esterified and free cholesterol and high-density lipoprotein-cholesterol concentrations were also unaffected by this compound. Only free fatty acids were elevated after the naringenin treatment in the water-drinking rats. In spite of unchanged glucose and insulin concentrations in blood, the tested flavanone reduced the glucose/insulin ratio in ethanol-receiving rats. Liver triglycerides, elevated due to ethanol ingestion, were partially normalized by naringenin. Other tested parameters like liver glycogen and cholesterol, muscle triglycerides and glycogen were not altered in any group of rats. The influence of naringenin (62.5, 125, 250 and 500 ,m) on basal and insulin-stimulated glucose conversion to lipids (lipogenesis) as well as on basal and epinephrine-stimulated glycerol release (lipolysis) in the isolated rat adipocytes was also tested. The basal and the stimulated lipogenesis tended to be decreased in the presence of the flavanone (250 ,m). This inhibitory effect intensified and was statistically significant at the highest concentration of naringenin. The tested compound did not evoke any effect on basal lipolysis while the epinephrine-stimulated process was limited at the highest concentration of the flavanone. Naringenin (62.5, 125, 250 and 500 ,m) had no effect on leptin secretion from the isolated rat adipocytes. Results obtained in our studies demonstrate that naringenin exerts a very weak influence on carbohydrate and lipid metabolism of normal and ethanol-consuming rats and on metabolism of isolated rat adipocytes. [source] Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplarBIOTECHNOLOGY PROGRESS, Issue 2 2009Renata Bura Abstract The focus of this study was to alter the xylan content of corn stover and poplar using SO2 -catalyzed steam pretreatment to determine the effect on subsequent hydrolysis by commercial cellulase preparations supplemented with or without xylanases. Steam pretreated solids with xylan contents ranging from ,1 to 19% (w/w) were produced. Higher xylan contents and improved hemicellulose recoveries were obtained with solids pretreated at lower severities or without SO2 -addition prior to pretreatment. The pretreated solids with low xylan content (<4% (w/w)) were characterized by fast and complete cellulose to glucose conversion when utilizing cellulases. Commercial cellulases required xylanase supplementation for effective hydrolysis of pretreated substrates containing higher amounts of xylan. It was apparent that the xylan content influenced both the enzyme requirements for hydrolysis and the recovery of sugars during the pretreatment process. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] Fast Transformation of Glucose and Di-/Polysaccharides into 5-Hydroxymethylfurfural by Microwave Heating in an Ionic Liquid/Catalyst SystemCHEMSUSCHEM CHEMISTRY AND SUSTAINABILITY, ENERGY & MATERIALS, Issue 9 2010Dr. Xinhua Qi Abstract An efficient method for converting glucose into 5-hydroxymethylfurfural (5-HMF), in the presence of CrCl3 catalyst, is developed by using the ionic liquid 1-butyl-3-methyl imidazolium chloride as solvent. A 5-HMF yield of 71,% is achieved in 30,s for 96,% glucose conversion with microwave heating at 140,°C. The activation energy of glucose conversion is determined to be 114.6,kJ,mol,1, with a pre-exponential factor of 3.5×1014,min,1. Fructose, sucrose, cellobiose, and cellulose are studied and 5-HMF yields of 54,% are obtained for cellulose conversion at 150,°C during 10,min of reaction time. Recycling of the ionic liquid and CrCl3 is demonstrated with six cycles of use. [source] |