Home About us Contact | |||
Glucose Consumption (glucose + consumption)
Selected AbstractsAlginate-encapsulated HepG2 Cells in a Fluidized Bed Bioreactor Maintain Function in Human Liver Failure PlasmaARTIFICIAL ORGANS, Issue 12 2009Sam M. Coward Abstract Alginate-encapsulated HepG2 cells cultured in microgravity have the potential to serve as the cellular component of a bioartificial liver. This study investigates their performance in normal and liver failure (LF) human plasma over 6,8 h in a fluidized bed bioreactor. After 8 days of microgravity culture, beads containing 1.5 × 109 cells were perfused for up to 8 h at 48 mL/min with 300 mL of plasma. After exposure to 90% LF plasma, vital dye staining showed maintained cell viability, while a 7% increase in lactate dehydrogenase activity indicated minimal cell damage. Glucose consumption, lactate production, and a 4.3-fold linear increase in alpha-fetoprotein levels were observed. Detoxificatory function was demonstrated by quantification of bilirubin conjugation, urea synthesis, and Cyp450 1A activity. These data show that in LF plasma, alginate-encapsulated HepG2 cells can maintain viability, and metabolic, synthetic, and detoxificatory activities, indicating that the system can be scaled-up to form the biological component of a bioartificial liver. [source] Effects of glucose and insulin on HepG2-C3A cell metabolismBIOTECHNOLOGY & BIOENGINEERING, Issue 2 2010Vidya V. Iyer Abstract HepG2, hepatocellular carcinoma cells, are used in drug toxicity studies and have also been explored for bioartificial livers. For these applications, the cells are under variable levels of nutrients and hormones, the effects of which on metabolism are poorly understood. In this study, HepG2-C3A cells were cultured under varying levels of glucose (high, low, and glucose-free) and insulin (without and with physiological levels of insulin) for 5 days. Cell growth was found to be comparable between high and low glucose media and lowest for glucose-free medium. Several features of central metabolism were affected profoundly by the medium glucose levels. Glucose consumption was greater for low glucose medium compared to high glucose medium, consistent with known glucose feedback regulation mechanisms. Urea productivity was highest in glucose-free medium. Further, it was seen that lactate acted as an alternative carbon source in the absence of glucose, whereas it acted as a sink for the high and low glucose media. Using a metabolic network flexibility analysis (MNFA) framework with stoichiometric and thermodynamic constraints, intracellular fluxes under varying levels of glucose and insulin were evaluated. The analysis indicates that urea production in HepG2-C3A cells arises via the arginase II pathway rather than from ammonia detoxification. Further, involvement of the putrescine metabolism with glutamine metabolism caused higher urea production in glucose-free medium consistent with higher glutamine uptake. MNFA indicated that in high and low glucose media, glycolysis, glutaminolysis, and oxidative phosphorylation were the main sources of energy (NADH, NADPH, and ATP). In the glucose-free medium, due to very low glycolytic flux, higher malate to pyruvate glutaminolytic flux and TCA cycle contributed more significantly to energy metabolism. The presence of insulin lowered glycerol uptake and corresponding fluxes involved in lipid metabolism for all glucose levels but otherwise exerted negligible effect on metabolism. HepG2-C3A cells thus show distinct differences from primary hepatocytes in terms of energy metabolism and urea production. This knowledge can be used to design media supplements and metabolically engineer cells to restore necessary hepatic functions to HepG2-C3A cells for a range of applications. Biotechnol. Bioeng. 2010;107: 347,356. © 2010 Wiley Periodicals, Inc. [source] The fermentation stoichiometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on hydrogen productionBIOTECHNOLOGY PROGRESS, Issue 4 2009Sarah A. Munro Abstract The hyperthermophilic bacterium, Thermotoga neapolitana, has potential for use in biological hydrogen (H2) production. The objectives of this study were to (1) determine the fermentation stoichiometry of Thermotoga neapolitana and examine H2 production at various growth temperatures, (2) investigate the effect of oxygen (O2) on H2 production, and (3) determine the cause of glucose consumption inhibition. Batch fermentation experiments were conducted at temperatures of 60, 65, 70, 77, and 85°C to determine product yield coefficients and volumetric productivity rates. Yield coefficients did not show significant changes with respect to growth temperature and the rate of H2 production reached maximum levels in both the 77°C and 85°C experiments. The fermentation stoichiometry for T. neapolitana at 85°C was 3.8 mol H2, 2 mol CO2, 1.8 mol acetate, and 0.1 mol lactate produced per mol of glucose consumed. Under microaerobic conditions H2 production did not increase when compared to anaerobic conditions, which supports other evidence in the literature that T. neapolitana does not produce H2 through microaerobic metabolism. Glucose consumption was inhibited by a decrease in pH. When pH was adjusted with buffer addition cultures completely consumed available glucose. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] Static Magnetic Fields Enhancement of Saccharomyces cerevisae Ethanolic FermentationBIOTECHNOLOGY PROGRESS, Issue 1 2004Mauricy Alves da Motta Magnetic effects induced in ethanolic fermentation by Saccharomycescerevisiae strain DAUFPE-1012 were studied during a 24 h exposure to 220 mT steady magnetic fields (SMF) at 23 ± 1 °C, produced by NdFeB rod magnets. The magnets were attached diametrically opposed (N to S) to a cylindrical tube reactor. The biomass growth in the reactor culture media (yeast extract + glucose 2%) during 24 h was monitored by measurements of optical density, which was correlated to cell dry weight. Ethanol concentration and glucose level were measured every 2 h. The pH of the culture media was maintained between 4 and 5. As a result, biomass (g/L) increased 2.5-fold and ethanol concentration 3.4-fold in magnetized cultures ( n = 8) as compared with SMF nonexposed cultures ( n = 8). Glucose consumption was higher in magnetized cultures, which correlated to the ethanol yield. [source] The correlation between cerebral glucose metabolism and benzodiazepine receptor density in the acute vegetative stateEUROPEAN JOURNAL OF NEUROLOGY, Issue 6 2002J. Rudolf This paper compares the results of parallel positron emission tomography (PET) studies of regional cerebral glucose metabolism with the radiotracer 18F-fluorodeoxyglucose (FDG) and benzodiazepine receptor (BZR) density by PET using the BZR ligand 11C-flumazenil (FMZ), a tracer of neuronal integrity, in nine patients with acute vegetative state (AVS, duration <1 month). Overall glucose utilization was significantly reduced in AVS in comparison with age-matched controls (global metabolic rate for glucose 26 ,mol/100 g/min in AVS vs. 31 ,mol/100 g/min in controls). FMZ-PET demonstrated a considerable reduction of BZR binding sites in all cortical regions that grossly corresponded to the extent of reduction of cerebral glucose metabolism assessed with FDG-PET, whilst the cerebellum was spared from neuronal loss. In controls, cortical relative flumazenil binding was not lower than five times the average white matter activity, whilst in AVS, nearly all values were below this threshold. There was no relevant overlap of the data of relative flumazenil binding between both groups. The comparison of FDG- and FMZ-PET findings in AVS demonstrates that alterations of cerebral glucose consumption do not represent mere functional inactivation, but irreversible structural brain damage. [source] Dictyostelium differentiation-inducing factor-1 induces glucose transporter 1 translocation and promotes glucose uptake in mammalian cellsFEBS JOURNAL, Issue 13 2007Waka Omata The differentiation-inducing factor-1 (DIF-1) is a signal molecule that induces stalk cell formation in the cellular slime mold Dictyostelium discoideum, while DIF-1 and its analogs have been shown to possess antiproliferative activity in vitro in mammalian tumor cells. In the present study, we investigated the effects of DIF-1 and its analogs on normal (nontransformed) mammalian cells. Without affecting the cell morphology and cell number, DIF-1 at micromolar levels dose-dependently promoted the glucose uptake in confluent 3T3-L1 fibroblasts, which was not inhibited with wortmannin or LY294002 (inhibitors for phosphatidylinositol 3-kinase). DIF-1 affected neither the expression level of glucose transporter 1 nor the activities of four key enzymes involved in glucose metabolism, such as hexokinase, fluctose 6-phosphate kinase, pyruvate kinase, and glucose 6-phosphate dehydrogenase. Most importantly, stimulation with DIF-1 was found to induce the translocation of glucose transporter 1 from intracellular vesicles to the plasma membranes in the cells. In differentiated 3T3-L1 adipocytes, DIF-1 induced the translocation of glucose trasporter 1 (but not of glucose transporter 4) and promoted glucose uptake, which was not inhibited with wortmannin. These results indicate that DIF-1 induces glucose transporter 1 translocation and thereby promotes glucose uptake, at least in part, via a inhibitors for phosphatidylinositol 3-kinase/Akt-independent pathway in mammalian cells. Furthermore, analogs of DIF-1 that possess stronger antitumor activity than DIF-1 were less effective in promoting glucose consumption, suggesting that the mechanism of the action of DIF-1 for stimulating glucose uptake should be different from that for suppressing tumor cell growth. [source] Expression of GLUT8 in mouse intestine: Identification of alternative spliced variantsJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2009Amparo Romero Abstract GLUT8 is a facilitative glucose transporter composed of 10 exons coding for a 477 amino acids protein. It is mainly expressed in the testis, but it has also been studied in a number of tissues such as brain, adipose tissue, and liver. In this work, we have characterized the expression of GLUT8 in the small and large intestine under normal physiological conditions. Protein assay revealed low GLUT8 protein levels in the intestine compared to the testis, with higher levels in the colon than in the small intestine. Immunohistochemistry studies showed an intracellular localization of GLUT8 in enterocytes and colonocytes with a supranuclear distribution next to the apical membrane. GLUT8 immunoreactivity was also detected in the crypt cells. Interestingly, we have identified three additional transcriptional variants in mouse intestine (mGLUT-SP1, mGLUT8-SP2, and mGLUT8-SP3) produced by the deletion of one, two, and four exons, respectively, whereas only the entire mRNA was detected in the testis. Expression of these alternative variants did not have an effect on glucose consumption in 3T3-L1 cells. Although the specific function of GLUT8 in intestine remains unclear, the alternative splicing of GLUT8 could reflect a mechanism for the regulation of the gene expression in a tissue-specific manner by targeting GLUT8 mRNA for nonsense-mediated decay. J. Cell. Biochem. 106: 1068,1078, 2009. © 2009 Wiley-Liss, Inc. [source] Development of selective tolerance to interleukin-1, by human chondrocytes in vitro,JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2002Greta M. Lee Interleukin-1 induces release of NO and PGE2 and production of matrix degrading enzymes in chondrocytes. In osteoarthritis (OA), IL-1 continually, or episodically, acts on chondrocytes in a paracrine and autocrine manner. Human chondrocytes in chondron pellet culture were treated chronically (up to 14 days) with IL-1,. Chondrons from OA articular cartilage were cultured for 3 weeks before treatment with IL-1, (0.05,10 ng/ml) for an additional 2 weeks. Spontaneous release of NO and IL-1, declined over the pretreatment period. In response to IL-1, (0.1 ng/ml), NO and PGE2 release was maximal on Day 2 or 3 and then declined to near basal level by Day 14. Synthesis was recovered by addition of 1 ng/ml IL-1, on Day 11. Expression of inducible nitric oxide synthase (iNOS), detected by immunofluorescence, was elevated on Day 2 and declined through Day 14, which coordinated with the pattern of NO release. On the other hand, IL-1,-induced MMP-13 synthesis was elevated on Day 3, declined on Day 5, and then increased again through Day 14. IL-1, increased glucose consumption and lactate production throughout the treatment. IL-1, stimulated proteoglycan degradation in the early days and inhibited proteoglycan synthesis through Day 14. Chondron pellet cultures from non-OA cartilage released the same amount of NO but produced less PGE2 and MMP-13 in response to IL-1, than OA cultures. Like the OA, IL-1,-induced NO and PGE2 release decreased over time. In conclusion, with prolonged exposure to IL-1,, human chondrocytes develop selective tolerance involving NO and PGE2 release but not MMP-13 production, metabolic activity, or matrix metabolism. © 2002 Wiley-Liss, Inc. [source] Development of a mathematical model for Bacillus circulans growth and alkaline protease production kineticsJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 2 2009Chaganti Subba Rao Abstract BACKGROUND: An unstructured mathematical model was developed to understand information on the relationship between Bacillus circulans growth and metabolism-related protease production (using logistic and Luedeking,Piret equations respectively) in a batch reactor with respect to glucose consumption and fermentation time. The objective was to develop an indispensable tool for the optimisation, control, design and analysis of alkaline protease production. RESULTS: Biomass growth and enzyme production titres changed with a change in substrate concentration. Modelling analysis of biomass and enzyme production titres at different substrate concentrations revealed significant accuracy in terms of statistical consistency and robustness with respect to fermentation kinetic profiles. CONCLUSION: With the B. circulans strain used, an economic protease yield (2837 × 103 U g,1) with respect to biomass and glucose ratio was achieved at low substrate concentration (10 g L,1). The developed model could be effectively utilised for designing, controlling and up-scaling the protease production process in high-density fermentation in selected bioreactors with statistical consistency. Copyright © 2008 Society of Chemical Industry [source] Lactate efflux and the neuroenergetic basis of brain functionNMR IN BIOMEDICINE, Issue 7-8 2001Robert G. Shulman Abstract In the unstimulated brain energy is primarily supplied by the oxidation of glucose. However the oxygen-to-glucose index (OGI), which is the ratio of metabolic rates of oxygen to glucose, CMRO2/CMRglc, diverges from the theoretical value of 6 as activity is increased. In vivo measurements of brain lactate show its concentration to increase with stimulation. The decreasing OGI with stimulation had led to the suggestion that activation, unlike resting activity, is supported by anaerobic glycolysis. To date a unifying concept that accommodates glucose oxidation at rest with lactate generation and OGI decrease during stimulation of brain is lacking. Furthermore, energetics that change with increasing activity are not consistent with a neuroenergetic model that has been proposed from 1- 13C-glucose MRS experiments. That model, based upon in vivo MRS measurements and cellular studies by Pellerin and Magistretti, showed that glutamate neurotransmitter cycling was coupled to glucose oxidation over a wide range of brain activities from rest down to deep anesthesia. Here we reconcile these paradoxical observations by suggesting that anaerobic glucose consumption (which can provide energy rapidly) increases with activation to meet the power requirements of millisecond neuronal firing. It is proposed, in accord with our neuroenergetic model, that the extra glucose mobilized rapidly for glial clearance of glutamate, is not needed for the oxidative processes that are responsible for neuronal firing and glutamate release, and consequently it is effluxed as lactate. A stoichiometric relation between OGI and lactate concentration is derived from the neuroenergetic model, showing that the enhanced glucose uptake during activation is consistent with neuronal activity being energetically supported by glucose oxidation. Copyright © 2001 John Wiley & Sons, Ltd. [source] A comparative proteomic approach to understand the adaptations of an H+ -ATPase-defective mutant of Corynebacterium glutamicum ATCC14067 to energy deficienciesPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 18 2007Liyuan Li Abstract F172-8, an H+ -ATPase-defective mutant of the glutamic acid-producing bacterium Corynebacterium glutamicum ATCC 14067, exhibits enhanced rates of glucose consumption and respiration compared to the parental strain when cultured in a biotin-rich medium with glucose as the carbon source. We conducted a comparative proteomic analysis to clarify the mechanism by which the enhanced glucose metabolism in this mutant is established using a proteome reference map for strain ATCC 14067. A comparison of the proteomes of the two strains revealed the up-regulated expression of the several important enzymes such as pyruvate kinase (Pyk), malate:quinone oxidoreductase (Mqo), and malate dehydrogenase (Mdh) in the mutant. Because Pyk activates glycolysis in response to cellular energy shortages in this bacterium, its increased expression may contribute to the enhanced glucose metabolism of the mutant. A unique reoxidation system has been suggested for NADH in C. glutamicum consisting of coupled reactions between Mqo and Mdh, together with the respiratory chain; therefore, the enhanced expression of both enzymes might contribute to the reoxidation of NADH during increased respiration. The proteomic analysis allowed the identification of unique physiological changes associated with the H+ -ATPase defect in F172-8 and contributed to the understanding of the adaptations of C. glutamicum to energy deficiencies. [source] Translational and transcriptional analysis of Sulfolobus solfataricus P2 to provide insights into alcohol and ketone utilisationPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 3 2007Poh Kuan Chong Abstract The potential of Sulfolobus solfataricus P2 for alcohol or ketone bioconversion was explored in this study. S. solfataricus was grown in different concentrations (0.1,0.8% w/v) of alcohols or ketones (ethanol, iso-propanol, n -propanol, acetone, phenol and hexanol) in the presence of 0.4% w/v glucose. Consequently, the addition of these alcohols or ketones into the growth media had an inhibitory effect on biomass production, whereby lag times increased and specific growth rates decreased when compared to a glucose control. Complete glucose utilisation was observed in all cultures, although slower rates of glucose consumption were observed in experimental cultures (average of 14.9,mg/L/h compared to 18.9,mg/L/h in the control). On the other hand, incomplete solvent utilisation was observed, with the highest solvent consumption being approximately 51% of the initial concentration in acetone cultures. Translational responses of S. solfataricus towards these alcohols or ketones were then investigated using the isobaric tags for relative and absolute quantitation (iTRAQ) technique. The majority (>80%) of proteins identified and quantified showed no discernable changes in regulation compared to the control. These results, along with those obtained from transcriptional analysis of key genes involved within this catabolic process using quantitative RT-PCR and metabolite analysis, demonstrate successful alcohol or ketone conversion in S. solfataricus. [source] Effect of anion channel blockers on l- arginine action in spermatozoa from asthenospermic menANDROLOGIA, Issue 2 2010S. Srivastava Summary In earlier studies, we have established that l- arginine enhances motility and metabolic rate in spermatozoa of goat, bull and mouse. In the present study this work was extended to human sperm cells obtained from the semen samples of asthenospermic patients, which are characterised by low motility. The metabolic rate was followed by monitoring the glucose consumption (1- 13C glucose as substrate) and the production of lactate in sperm cells, using 13C NMR. The stimulatory effect of l- arginine was neutralised on adding an NO-synthase inhibitor like N, -nitro- l- arginine methyl ester. On the other hand, the inactive d -enantiomorph did not affect the stimulatory effect of l- arginine. This strongly suggests that l- arginine acts through the NO signal pathway. We also demonstrated that the stimulatory effect of l- arginine was inhibited in the presence of anion channel inhibitors like 4-acetamido-4,-isothiocyanostilbene-2,2,-disulphonic acid, 2,4-dinitrophenol and carbonyl cyanide m-chlorophenylhydrazone. Furthermore, bicarbonate supplementation was found to be essential for the action of l- arginine. These observations indicate that l- arginine induces NO synthesis and stimulates motility and metabolism only when an active anion transport system is present. [source] Mesenteric Complications After Hypothermic Cardiopulmonary Bypass with Cardiac Arrest: Underlying MechanismsARTIFICIAL ORGANS, Issue 11 2002Terézia Bogdana Andrási Abstract: The aim of this study was to determine the pathophysiological mechanisms of postcardiopulmonary bypass (CPB) intestinal dysfunction using an in vivo canine model of extracorporeal circulation. Six dogs underwent a 90 min hypothermic CPB with continuous monitoring of mean arterial blood pressure (MAP) and mesenteric blood flow (MBF). Reactive hyperemia and vasodilator responses of the superior mesenteric artery to acetylcholine and sodium nitroprusside were determined before and after CPB. Mesenteric lactate production, glucose consumption, creatine kinase (CK) release and venous free radicals were determined. CPB induced a significant fall (p < 0.05) in MAP and MBF. After CPB, reactive hyperemia (,26 ± 15% versus ,53 ± 2%, p < 0.05) and the response to acetylcholine (,42 ± 9 versus ,55 ± 6%, p < 0.05) were significantly decreased. Reperfusion increased lactate production (0.8 ± 0.09 mmol/L versus 0.4 ± 0.18, p < 0.05) and the CK release (446 ± 98 U/L versus 5 ± 19 U/L, p < 0.01). Endothelial dysfunction, conversion from aerobic to anaerobic metabolism, and intestinal cell necrosis seem to be responsible for intestinal complications associated with CPB. [source] A study of D-lactate and extracellular methylglyoxal production in lactate Re-Utilizing CHO culturesBIOTECHNOLOGY & BIOENGINEERING, Issue 1 2010Tomas Paoli Abstract In large-scale mammalian cell culture, the key toxic by-products assessed and monitored are lactate and ammonia. Often no distinction between the two isoforms of lactate is made. Here, we present profiles of both D - and L -lactate. D -Lactate is the end molecule of the methylglyoxal pathway. D -Lactate unlike L -lactate is not re-utilized, and although during normal culture time frames it represents one-tenth of total lactate, during lactate re-use it represents nearly 35%. This indicates significant carbon flow through pathways not associated with primary metabolites. We have observed that the behavior of D -lactate is radically different from that of L -lactate with the level of one isoform changing, whilst the concentration of the other remains constant. This is an example of an alternate carbon flow pathway containing metabolic intermediates that may potentially have a detrimental effect on cells. The activity of the methylglyoxal pathway when measured as a proportion of glucose consumption in this study far exceeds any previously reported. This highlights the potential importance of "non-primary" metabolisms to long lifespan mammalian fermentation practices. Biotechnol. Bioeng. 2010;107: 182,189. © 2010 Wiley Periodicals, Inc. [source] Development and characterization of a tissue engineered pancreatic substitute based on recombinant intestinal endocrine L-cellsBIOTECHNOLOGY & BIOENGINEERING, Issue 4 2009Heather Bara Abstract A tissue engineered pancreatic substitute (TEPS) consisting of insulin-producing cells appropriately designed and encapsulated to support cellular function and prevent interaction with the host may provide physiological blood glucose regulation for the treatment of insulin dependent diabetes (IDD). The performance of agarose-based constructs which contained either a single cell suspension of GLUTag-INS cells, a suspension of pre-aggregated GLUTag-INS spheroids, or GLUTag-INS cells on small intestinal submucosa (SIS), was evaluated in vitro for total cell number, weekly glucose consumption and insulin secretion rates (GCR and ISR), and induced insulin secretion function. The three types of TEPS studied displayed similar number of cells, GCR, and ISR throughout 4 weeks of culture. However, the TEPS, which incorporated SIS as a substrate for the GLUTag-INS cells, was the only type of TEPS tested which was able to retain the induced insulin secretion function of non-encapsulated GLUTag-INS cells. Though improvements in the expression level of GLUTag-INS cells and/or the number of viable cells contained within the TEPS are needed for successful treatment of a murine model of IDD, this study has revealed a potential method for promoting proper cellular function of recombinant L-cells upon incorporation into an implantable three-dimensional TEPS. Biotechnol. Bioeng. 2009;103: 828,834. © 2009 Wiley Periodicals, Inc. [source] In vitro liver model using microfabricated scaffolds in a modular bioreactorBIOTECHNOLOGY JOURNAL, Issue 2 2010Bruna Vinci Abstract Hepatocyte function on 3-D microfabricated polymer scaffolds realised with the pressure-activated microsyringe was tested under static and dynamic conditions. The dynamic cell culture was obtained using the multicompartment modular bioreactor system. Hepatocyte cell density, glucose consumption, and albumin secretion rate were measured daily over a week. Cells seeded on scaffolds showed an increase in cell density compared with monolayer controls. Moreover, in dynamic culture, cell metabolic function increased three times in comparison with static monolayer cultures. These results suggest that cell density and cell-cell interactions are mediated by the architecture of the substrate, while the endogenous biochemical functions are regulated by a sustainable supply of nutrients and interstitial-like flow. Thus, a combination of 3-D scaffolds and dynamic flow conditions are both important for the development of a hepatic tissue model for applications in drug testing and regenerative medicine. [source] A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolismBIOTECHNOLOGY PROGRESS, Issue 5 2009Ningning Ma Abstract A chemically defined nutrient feed (CDF) coupled with basal medium preloading was developed to replace a hydrolysate-containing feed (HCF) for a fed-batch NS0 process. The CDF not only enabled a completely chemically defined process but also increased recombinant monoclonal antibody titer by 115%. Subsequent tests of CDF in a CHO process indicated that it could also replace the hydrolysate-containing nutrient feed in this expression system as well as providing an 80% increase in product titer. In both CDF NS0 and CHO processes, the peak lactate concentrations were lower and, more interestingly, lactate metabolism shifted markedly from net production to net consumption when cells transitioned from exponential to stationary growth phase. Subsequent investigations of the lactate metabolic shift in the CHO CDF process were carried out to identify the cause(s) of the metabolic shift. These investigations revealed several metabolic features of the CHO cell line that we studied. First, glucose consumption and lactate consumption are strictly complementary to each other. The combined cell specific glucose and lactate consumption rate was a constant across exponential and stationary growth phases. Second, Lactate dehydrogenase (LDH) activity fluctuated during the fed-batch process. LDH activity was at the lowest when lactate concentration started to decrease. Third, a steep cross plasma membrane glucose gradient exists. Intracellular glucose concentration was more than two orders of magnitude lower than that in the medium. Fourth, a large quantity of citrate was diverted out of mitochondria to the medium, suggesting a partially truncated tricarboxylic acid (TCA) cycle in CHO cells. Finally, other intermediates in or linked to the glycolytic pathway and the TCA cycle, which include alanine, citrate, isocitrate, and succinate, demonstrated a metabolic shift similar to that of lactate. Interestingly, all these metabolites are either in or linked to the pathway downstream of pyruvate, but upstream of fumarate in glucose metabolism. Although the specific mechanisms for the metabolic shift of lactate and other metabolites remain to be elucidated, the increased understanding of the metabolism of CHO cultures could lead to future improvements in medium and process development. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] A hybrid model of anaerobic E. coli GJT001: Combination of elementary flux modes and cybernetic variablesBIOTECHNOLOGY PROGRESS, Issue 5 2008Jin Il Kim Flux balance analysis (FBA) in combination with the decomposition of metabolic networks into elementary modes has provided a route to modeling cellular metabolism. It is dependent, however, on the availability of external fluxes such as substrate uptake or growth rate before estimates can become available of intracellular fluxes. The framework classically does not allow modeling of metabolic regulation or the formulation of dynamic models except through dynamic measurement of external fluxes. The cybernetic modeling approach of Ramkrishna and coworkers provides a dynamic framework for modeling metabolic systems because of its focus on describing regulatory processes based on cybernetic arguments and hence has the capacity to describe both external and internal fluxes. In this article, we explore the alternative of developing hybrid models combining cybernetic models for the external fluxes with the flux balance approach for estimation of the internal fluxes. The approach has the merit of the simplicity of the early cybernetic models and hence computationally facile while also providing detailed information on intracellular fluxes. The hybrid model of this article is based on elementary mode decomposition of the metabolic network. The uptake rates for the various elementary modes are combined using global cybernetic variables based on maximizing substrate uptake rates. Estimation of intracellular metabolism is based on its stoichiometric coupling with the external fluxes under the assumption of (pseudo-) steady state conditions. The set of parameters of the hybrid model was estimated with the aid of nonlinear optimization routine, by fitting simulations with dynamic experimental data on concentrations of biomass, substrate, and fermentation products. The hybrid model estimations were tested with FBA (based on measured substrate uptake rate) for two different metabolic networks (one is a reduced network which fixes ATP contribution to the biomass and maintenance requirement of ATP, and the other network is a more complex network which has a separate reaction for maintenance.) for the same experiment involving anaerobic growth of E. coli GJT001. The hybrid model estimated glucose consumption and all fermentation byproducts to better than 10%. The FBA makes similar estimations of fermentation products, however, with the exception of succinate. The simulation results show that the global cybernetic variables alone can regulate the metabolic reactions obtaining a very satisfactory fit to the measured fermentation byproducts. In view of the hybrid model's ability to predict biomass growth and fermentation byproducts of anaerobic E. coli GJT001, this reduced order model offers a computationally efficient alternative to more detailed models of metabolism and hence useful for the simulation of bioreactors. [source] Cell Separator Operation within Temperature Ranges To Minimize Effects on Chinese Hamster Ovary Cell Perfusion CultureBIOTECHNOLOGY PROGRESS, Issue 6 2007Hans Drouin A cell retention device that provides reliable high-separation efficiency with minimal negative effects on the cell culture is essential for robust perfusion culture processes. External separation devices generally expose cells to periodic variations in temperature, most commonly temperatures below 37 °C, while the cells are outside the bioreactor. To examine this phenomenon, aliquots of ,5% of a CHO cell culture were exposed to 60 s cyclic variations of temperature simulating an acoustic separator environment. It was found that, for average exposure temperatures between 31.5 and 38.5 °C, there were no significant impacts on the rates of growth, glucose consumption, or t-PA production, defining an acceptable range of operating temperatures. These results were subsequently confirmed in perfusion culture experiments for average exposure temperatures between 31.6 and 38.1 °C. A 25,1 central composite factorial design experiment was then performed to systematically evaluate the effects of different operating variables on the inlet and outlet temperatures of a 10L acoustic separator. The power input, ambient temperature, as well as the perfusion and recycle flow rates significantly influenced the temperature, while the cell concentration did not. An empirical model was developed that predicted the temperature changes between the inlet and the outlet of the acoustic separator within ±0.5 °C. A series of perfusion experiments determined the ranges of the significant operational settings that maintained the acoustic separator inlet and outlet temperatures within the acceptable range. For example, these objectives were always met by using the manufacturer-recommended operational settings as long as the recirculation flow rate was maintained above 15 L day,1 and the ambient temperature was near 22 °C. [source] Understanding and Improving NADPH-Dependent Reactions by Nongrowing Escherichia coli CellsBIOTECHNOLOGY PROGRESS, Issue 2 2004Adam Z. Walton We have shown that whole Escherichia coli cells overexpressing NADPH-dependent cyclohexanone monooxygenase carry out a model Baeyer-Villiger oxidation with high volumetric productivity (0.79 g ,-caprolactone/L·h ) under nongrowing conditions (Walton, A. Z.; Stewart, J. D. Biotechnol. Prog.2002, 18, 262,268). This is approximately 20-fold higher than the space-time yield for reactions that used growing cells of the same strain. Here, we show that the intracellular stability of cyclohexanone monooxygenase and the rate of substrate transport across the cell membrane were the key limitations on the overall reaction duration and rate, respectively. Directly measuring the levels of intracellular nicotinamide cofactors under bioprocess conditions suggested that E. coli cells could support even more efficient NADPH-dependent bioconversions if a more suitable enzyme-substrate pair were identified. This was demonstrated by reducing ethyl acetoacetate with whole cells of an E. coli strain that overexpressed an NADPH-dependent, short-chain dehydrogenase from bakerapos;s yeast ( Saccharomyces cerevisiae). Under glucose-fed, nongrowing conditions, this reduction proceeded with a space-time yield of 2.0 g/L·h and a final product titer of 15.8 g/L using a biocatalyst:substrate ratio (g/g) of only 0.37. These values are significantly higher than those obtained previously. Moreover, the stoichiometry linking ketone reduction and glucose consumption (2.3 ± 0.1) suggested that the citric acid cycle supplied the bulk of the intracellular NADPH under our process conditions. This information can be used to improve the efficiency of glucose utilization even further by metabolic engineering strategies that increase carbon flux through the pentose phosphate pathway. [source] Acute effect of antidiabetic 1,4-dihydropyridine compound cerebrocrast on cardiac function and glucose metabolism in the isolated, perfused normal rat heartCELL BIOCHEMISTRY AND FUNCTION, Issue 2 2008Janina Briede Abstract Diabetes mellitus (DM) is an important cardiovascular risk factor and is associated with abnormalities in endothelial and vascular smooth muscle cell function, evoked by chronic hyperglycemia and hyperlipidemia. Chronic insulin deficiency or resistance is marked by decreases in the intensity of glucose transport, glucose phosphorylation, and glucose oxidation, plus decreases in ATP levels in cardiac myocytes. It is important to search for new agents that promote glucose consumption in the heart and partially inhibit extensive fatty acid beta-oxidation observed in diabetic, ischemia. When the oxygen supply for myocardium is decreased, the heart accumulates potentially toxic intermediates of fatty acid beta-oxidation, that is, long-chain acylcarnitine and long-chain acyl-CoA metabolites. Exogenous glucose and heart glycogen become an important compensatory source of energy. Therefore we studied the effect of the antidiabetic 1,4-dihydropyridine compound cerebrocrast at concentrations from 10,10,M to 10,7,M on isolated rat hearts using the method of Langendorff, on physiological parameters and energy metabolism. Cerebrocrast at concentrations from 10,10,M to 10,7,M has a negative inotropic effect on the rat heart. It inhibits L -type Ca2+channels thereby diminishing the cellular Ca2+ supply, reducing contractile activity, and oxygen consumption, that normally favors enhanced glucose uptake, metabolism, and production of high-energy phosphates (ATP content) in myocardium. Cerebrocrast decreases heart rate and left ventricular (LV) systolic pressure; at concentrations of 10,10,M and 10,9,M it evokes short-term vasodilatation of coronary arteries. Increase of ATP content in the myocytes induced by cerebrocrast has a ubiquitous role. It can preserve the integrity of the cell plasma membranes, maintain normal cellular function, and inhibit release of lactate dehydrogenase (LDH) from cells that is associated with diabetes and heart ischemia. Administration of cerebrocrast together with insulin shows that both compounds only slightly enhance glucose uptake in myocardium, but significantly normalize the rate of contraction and relaxation (,±,dp/dt). The effect of insulin on coronary flow is more pronounced by administration of insulin together with cerebrocrast at a concentration of 10,7,M. Cerebrocrast may promote a shift of glucose consumption from aerobic to anerobic conditions (through the negative inotropic properties), and may be very significant in prevention of cardiac ischemic episodes. Copyright © 2007 John Wiley & Sons, Ltd. [source] Effect of dexamethasone on neutrophil metabolismCELL BIOCHEMISTRY AND FUNCTION, Issue 2 2003Carolina Garcia Abstract The effect of dexamethasone on glucose and glutamine metabolism was investigated. The consumption and oxidation of glucose and glutamine, and the production of glutamate and lactate were determined in neutrophils cultured for 3,h in the presence of dexamethasone. The activities and expression of glucose-6-phosphate dehydrogenase (G6PDH) and phosphate-dependent glutaminase were also determined under the same conditions. Addition of dexamethasone to the culture medium caused a significant increase of glucose consumption at 0.5,,m (123.9%) and 1.0,,m (78.3%) concentrations. In spite of this, however, glucose oxidation remained unchanged. The glucocorticoid did not change glutamine consumption but caused a significant increase of glutamate production and did not alter glutamine oxidation. Dexamethasone-treated neutrophils had a significant decrease of G6PDH activity and expression in particular at 1.0,,m concentration. Phosphate- dependent glutaminase activity was also decreased (about 34%) by dexamethasone treatment. A similar effect was observed on glutaminase expression as indicated by RT-PCR analysis. Thus, the effect of dexamethasone on neutrophil metabolism was particularly noticeable with respect to G6PDH and glutaminase activities where a decrease in the respective mRNA levels was demonstrated. Copyright © 2002 John Wiley & Sons, Ltd. [source] |