Home About us Contact | |||
Glucagon-like Peptide (glucagon-like + peptide)
Selected AbstractsInvolvement of Calmodulin in Glucagon-Like Peptide 1(7-36) Amide-Induced Inhibition of the ATP-Sensitive K+ Channel in Mouse Pancreatic ,-CellsEXPERIMENTAL PHYSIOLOGY, Issue 3 2001W. G. Ding The present investigation was designed to examine whether calmodulin is involved in the inhibition of the ATP-sensitive K+ (KATP) channel by glucagon-like peptide 1(7-36) amide (GLP-1) in mouse pancreatic ,-cells. Membrane potential, single channel and whole-cell currents through the KATP channels, and intracellular free Ca2+ concentration ([Ca2+]i) were measured in single mouse pancreatic ,-cells. Whole-cell patch-clamp experiments with amphotericin-perforated patches revealed that membrane conductance at around the resting potential is predominantly supplied by the KATP channels in mouse pancreatic ,-cells. The addition of 20 nM GLP-1 in the presence of 5 mM glucose significantly reduced the membrane KATP conductance, accompanied by membrane depolarization and the generation of electrical activity. A calmodulin inhibitor N -(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide (W-7, 20 ,M) completely reversed the inhibitory actions of GLP-1 on the membrane KATP conductance and resultant membrane depolarization. Cell-attached patch recordings confirmed the inhibition of the KATP channel activity by 20 nM GLP-1 and its restoration by 20 ,M W-7 or 10 ,M calmidazolium at the single channel level. Bath application of 20 ,M W-7 also consistently abolished the GLP-1-evoked increase in [Ca2+]i in the presence of 5 mM glucose. These results strongly suggest that the mechanisms by which GLP-1 inhibits the KATP channel activity accompanied by the initiation of electrical activity in mouse pancreatic ,-cells include a calmodulin-dependent mechanism in addition to the well-documented activation of the cyclic AMP-protein kinase A system. [source] GLP-1: physiological effects and potential therapeutic applicationsDIABETES OBESITY & METABOLISM, Issue 11 2008Kasper Aaboe Glucagon-like peptide 1 (GLP-1) is a gut-derived incretin hormone with the potential to change diabetes. The physiological effects of GLP-1 are multiple, and many seem to ameliorate the different conditions defining the diverse physiopathology seen in type 2 diabetes. In animal studies, GLP-1 stimulates ,-cell proliferation and neogenesis and inhibits ,-cell apoptosis. In humans, GLP-1 stimulates insulin secretion and inhibits glucagon and gastrointestinal secretions and motility. It enhances satiety and reduces food intake and has beneficial effects on cardiovascular function and endothelial dysfunction. Enhancing incretin action for therapeutic use includes GLP-1 receptor agonists resistant to degradation (incretin mimetics) and dipeptidyl peptidase (DPP)-4 inhibitors. In clinical trials with type 2 diabetic patients on various oral antidiabetic regimes, both treatment modalities efficaciously improve glycaemic control and ,-cell function. Whereas the incretin mimetics induce weight loss, the DPP-4 inhibitors are considered weight neutral. In type 1 diabetes, treatment with GLP-1 shows promising effects. However, several areas need clinical confirmation: the durability of the weight loss, the ability to preserve functional ,-cell mass and the applicability in other than type 2 diabetes. As such, long-term studies and studies with cardiovascular end-points are needed to confirm the true benefits of these new classes of antidiabetic drugs in the treatment of diabetes mellitus. [source] Glucagon-like peptide 1(GLP-1) in biology and pathologyDIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 2 2005Juris J. Meier Abstract Post-translational proteolytic processing of the preproglucagon gene in the gut results in the formation of glucagon-like peptide 1 (GLP-1). Owing to its glucose-dependent insulinotropic effect, this hormone was postulated to primarily act as an incretin, i.e. to augment insulin secretion after oral glucose or meal ingestion. In addition, GLP-1 decelerates gastric emptying and suppresses glucagon secretion. Under physiological conditions, GLP-1 acts as a part of the ,ileal brake', meaning that is slows the transition of nutrients into the distal gut. Animal studies suggest a role for GLP-1 in the development and growth of the endocrine pancreas. In light of its multiple actions throughout the body, different therapeutic applications of GLP-1 are possible. Promising results have been obtained with GLP-1 in the treatment of type 2 diabetes, but its potential to reduce appetite and food intake may also allow its use for the treatment of obesity. While rapid in vivo degradation of GLP-1 has yet prevented its broad clinical use, different pharmacological approaches aiming to extend the in vivo half-life of GLP-1 or to inhibit its inactivation are currently being evaluated. Therefore, antidiabetic treatment based on GLP-1 may become available within the next years. This review will summarize the biological effects of GLP-1, characterize its role in human biology and pathology, and discuss potential clinical applications as well as current clinical studies. Copyright © 2005 John Wiley & Sons, Ltd. [source] Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway,HEPATOLOGY, Issue 5 2010Nitika Arora Gupta Glucagon-like peptide 1 (GLP-1) is a naturally occurring peptide secreted by the L cells of the small intestine. GLP-1 functions as an incretin and stimulates glucose-mediated insulin production by pancreatic , cells. In this study, we demonstrate that exendin-4/GLP-1 has a cognate receptor on human hepatocytes and that exendin-4 has a direct effect on the reduction of hepatic steatosis in the absence of insulin. Both glucagon-like peptide 1 receptor (GLP/R) messenger RNA and protein were detected on primary human hepatocytes, and receptor was internalized in the presence of GLP-1. Exendin-4 increased the phosphorylation of 3-phosphoinositide-dependent kinase-1 (PDK-1), AKT, and protein kinase C , (PKC-,) in HepG2 and Huh7 cells. Small interfering RNA against GLP-1R abolished the effects on PDK-1 and PKC-,. Treatment with exendin-4 quantitatively reduced triglyceride stores compared with control-treated cells. Conclusion: This is the first report that the G protein,coupled receptor GLP-1R is present on human hepatocytes. Furthermore, it appears that exendin-4 has the same beneficial effects in vitro as those seen in our previously published in vivo study in ob/ob mice, directly reducing hepatocyte steatosis. Future use for human nonalcoholic fatty liver disease, either in combination with dietary manipulation or other pharmacotherapy, may be a significant advance in treatment of this common form of liver disease. (HEPATOLOGY 2010) [source] Dipeptidyl peptidase expression during experimental colitis in miceINFLAMMATORY BOWEL DISEASES, Issue 8 2010Roger Yazbeck PhD Abstract Background: We have previously demonstrated that inhibition of dipeptidyl peptidase (DP) activity partially attenuates dextran sulfate sodium (DSS) colitis in mice. The aim of this study was to further investigate the mechanisms of this protection. Materials and Methods: Wildtype (WT) and DPIV,/, mice consumed 2% DSS in drinking water for 6 days to induce colitis. Mice were treated with saline or the DP inhibitors Ile-Pyrr-(2-CN)*TFA or Ile-Thia. DP mRNA and enzyme levels were measured in the colon. Glucagon-like peptide (GLP)-2 and GLP-1 concentrations were determined by radioimmunoassay, regulatory T-cells (Tregs) by fluorescence activated cell sorting (FACS) on FOXp3+T cells in blood, and neutrophil infiltration assessed by myeloperoxidase (MPO) assay. Results: DP8 and DP2 mRNA levels were increased (P < 0.05) in WT+saline mice compared to untreated WT mice with colitis. Cytoplasmic DP enzyme activity was increased (P < 0.05) in DPIV,/, mice at day 6 of DSS, while DP2 activity was increased (P < 0.05) in WT mice with colitis. GLP-1 (63%) and GLP-2 (50%) concentrations increased in WT+Ile-Pyrr-(2-CN)*TFA mice compared to day-0 controls. MPO activity was lower in WT+Ile-Thia and WT+Ile-Pyrr-(2-CN)*TFA treated mice compared to WT+saline (P < 0.001) at day 6 colitis. Conclusions: DP expression and activity are differentially regulated during DSS colitis, suggesting a pathophysiological role for these enzymes in human inflammatory bowel disease (IBD). DP inhibitors impaired neutrophil recruitment and maintenance of the Treg population during DSS-colitis, providing further preclinical evidence for the potential therapeutic use of these inhibitors in IBD. Finally, DPIV appears to play a critical role in mediating the protective effect of DP inhibitors. Inflamm Bowel Dis 2010 [source] Presence of a functional receptor for GLP-1 in osteoblastic cells, independent of the cAMP-linked GLP-1 receptorJOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2010Bernardo Nuche-Berenguer Glucagon-like peptide 1 (GLP-1) controls glucose metabolism in extrapancreatic tissues through receptors other than the pancreatic cAMP-linked GLP-1 receptor; also, GLP-1 induces an insulin- and PTH-independent bone anabolic action in insulin-resistant and type-2 diabetic rats. Here we searched for the presence and characteristics of GLP-1 receptors in osteoblastic MC3T3-E1 cells. [125I]-GLP-1 specific binding to MC3T3-E1 cells was time- and temperature-dependent, reaching maximal value at 30,min at 25°C; in these conditions, [125I]-GLP-1 binding was dissociable, and displaced by GLP-1, partially by GLP-2, but not by exendin-4 (Ex-4), exendin-9 (Ex-9), glucagon or insulin; Scatchard analysis of the unlabeled GLP-1 data showed high and low affinity binding sites; cross-linking of GLP-1 binding revealed an estimated 70,kDa band, almost undetectable in the presence of 10,6,M GLP-1. GLP-1, Ex-9, insulin or glucagon failed to modify cellular cAMP content, while GLP-2 and Ex-4 increased it. However, GLP-1 induced an immediate hydrolysis of glycosylphosphatidylinositols (GPIs) generating short-lived inositolphosphoglycans (IPGs), and an increase in phosphatidylinositol-3 kinase (PI3K) and mitogen activated protein kinase (MAPK) activities; Ex-4 also affected GPIs, but its action was delayed with respect to that of GLP-1. This incretin was found to decrease Runx2 but increased osteocalcin gene expression, without affecting that of osteoprotegerin or the canonical Wnt pathway activity in MC3T3-E1 cells which do not express the pancreatic GLP-1 receptor. Our data demonstrate for the first time that GLP-1 can directly and functionally interact with osteoblastic cells, possibly through a GPI/IPG-coupled receptor. J. Cell. Physiol. 225: 585,592, 2010. © 2010 Wiley-Liss, Inc. [source] DPP-IV inhibition enhances the antilipolytic action of NPY in human adipose tissueDIABETES OBESITY & METABOLISM, Issue 4 2009K. Kos Context:, Dipeptidyl peptidase IV (DPP-IV) inactivates the incretin hormone glucagon-like peptide. It can also affect the orexigenic hormone neuropeptide Y (NPY1,36) which is truncated by DPP-IV to NPY3,36, as a consequence NPY's affinity changes from receptor Y1, which mediates the antilipolytic function of NPY, to other NPY receptors. Little is known whether DPP-IV inhibitors for the treatment of type 2 diabetic (T2DM) patients could influence these pathways. Aims:, To investigate the in vitro effects of NPY with DPP-IV inhibition in isolated abdominal subcutaneous (AbdSc) adipocytes on fat metabolism, and assessment of NPY receptor and DPP-IV expression in adipose tissue (AT). Methods:,Ex vivo human AT was taken from women undergoing elective surgery (body mass index: 27.5 (mean ± s.d.) ± 5 kg/m2, age: 43.7 ± 10 years, n = 36). Isolated AbdSc adipocytes were treated with human recombinant (rh)NPY (1,100 nM) with and without DPP-IV inhibitor (1 M); glycerol release and tissue distribution of DPP-IV, Y1 and Y5 messenger RNA (mRNA) were measured and compared between lean and obese subjects. Results and conclusion:, rhNPY reduced glycerol release, an effect that was further enhanced by co-incubation with a DPP-IV inhibitor [control: 224 (mean ± s.e.) ± 37 ,mol/l; NPY, 100 nM: 161 ± 27 ,mol/l**; NPY 100 nM/DPP-IV inhibitor, 1 M: 127 ± 14 ,mol/l**; **p < 0.01, n = 14]. DPP-IV was expressed in AbdSc AT and omental AT with relative DPP-IV mRNA expression lower in AbdSc AT taken from obese [77 ± 6 signal units (SU)] vs. lean subjects (186 ± 29 SU*, n = 10). Y1 was predominantly expressed in fat and present in all fat depots but higher in obese subjects, particularly the AbdSc AT-depot (obese: 1944 ± 111 SU vs. lean: 711 ± 112 SU**, n = 10). NPY appears to be regulated by AT-derived DPP-IV. DPP-IV inhibitors augment the antilipolytic effect of NPY in AT. Further studies are required to show whether this explains the lack of weight loss in T2DM patients treated with DPP-IV inhibitors. [source] Dipeptidyl peptidase-IV inhibitors: a major new class of oral antidiabetic drugDIABETES OBESITY & METABOLISM, Issue 2 2007Iskandar Idris Exploiting the incretin effect to develop new glucose-lowering treatments has become the focus of intense research. One successful approach has been the development of oral inhibitors of dipeptidyl peptidase-IV (DPP-IV). These drugs reversibly block DPP-IV-mediated inactivation of incretin hormones, for example, glucagon-like peptide 1 (GLP-1) and also other peptides that have alanine or proline as the penultimate N-terminal amino acid. DPP-IV inhibitors, therefore, increase circulating levels and prolong the biological activity of endogenous GLP-1, but whether this is sufficient to fully explain the substantial reduction in haemoglobin A1c (HbA1c) and associated metabolic profile remains open to further investigation. DPP-IV inhibitors such as vildagliptin and sitagliptin have been shown to be highly effective antihyperglycaemic agents that augment insulin secretion and reduce glucagon secretion via glucose-dependent mechanisms. This review summarizes the major clinical trials with DPP-IV inhibitors as monotherapy and as add-on therapy in patients with type 2 diabetes. The magnitude of HbA1c reduction with DPP-IV inhibitors depends upon the pretreatment HbA1c values, but there seems to be no change in body weight, and very low rates of hypoglycaemia and gastrointestinal disturbance with these agents. DPP-IV inhibitors represent a major new class of oral antidiabetic drug and their metabolic profile offers a number of unique clinical advantages for the management of type 2 diabetes. [source] Glucagon-like peptide 1(GLP-1) in biology and pathologyDIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 2 2005Juris J. Meier Abstract Post-translational proteolytic processing of the preproglucagon gene in the gut results in the formation of glucagon-like peptide 1 (GLP-1). Owing to its glucose-dependent insulinotropic effect, this hormone was postulated to primarily act as an incretin, i.e. to augment insulin secretion after oral glucose or meal ingestion. In addition, GLP-1 decelerates gastric emptying and suppresses glucagon secretion. Under physiological conditions, GLP-1 acts as a part of the ,ileal brake', meaning that is slows the transition of nutrients into the distal gut. Animal studies suggest a role for GLP-1 in the development and growth of the endocrine pancreas. In light of its multiple actions throughout the body, different therapeutic applications of GLP-1 are possible. Promising results have been obtained with GLP-1 in the treatment of type 2 diabetes, but its potential to reduce appetite and food intake may also allow its use for the treatment of obesity. While rapid in vivo degradation of GLP-1 has yet prevented its broad clinical use, different pharmacological approaches aiming to extend the in vivo half-life of GLP-1 or to inhibit its inactivation are currently being evaluated. Therefore, antidiabetic treatment based on GLP-1 may become available within the next years. This review will summarize the biological effects of GLP-1, characterize its role in human biology and pathology, and discuss potential clinical applications as well as current clinical studies. Copyright © 2005 John Wiley & Sons, Ltd. [source] Role of glucotoxicity and lipotoxicity in the pathophysiology of Type 2 diabetes mellitus and emerging treatment strategiesDIABETIC MEDICINE, Issue 12 2009S. Del Prato Abstract Type 2 diabetes mellitus is a disease characterized by persistent and progressive deterioration of glucose tolerance. Both insulin resistance and impaired insulin secretion contribute to development of Type 2 diabetes. However, whilst insulin resistance is fully apparent in the pre-diabetic condition, impairment of insulin secretion worsens over the time, being paralleled by a progressive decline in both pancreatic B-cell function and B-cell mass. Intense research has identified a number of genetic variants that may predispose to impaired B-cell function, but such predisposition can be precipitated and worsened by toxic effects of hyperglycaemia (glucotoxicity) and elevated levels of free fatty acids (lipotoxicity). All these aspects of the pathogenesis of Type 2 diabetes are discussed in this review. Moreover, treatments that target reduction in glucotoxicity or lipotoxicity are outlined, including emerging strategies that target the role of glucagon-like peptide 1 and sodium glucose co-transporter 2. [source] No reactive hypoglycaemia in Type 2 diabetic patients after subcutaneous administration of GLP-1 and intravenous glucoseDIABETIC MEDICINE, Issue 2 2001T. Vilsbøll SUMMARY Aims It has previously been shown that intravenous and subcutaneous administration of glucagon-like peptide (GLP)-1 concomitant with intravenous glucose results in reactive hypoglycaemia in healthy subjects. Since GLP-1 is also effective in Type 2 diabetic patients and is presently being evaluated as a therapeutic agent in this disease, it is important to investigate whether GLP-1 can cause hypoglycaemia in such patients. Methods Eight Type 2 diabetic patients (age 54 (49,67) years; body mass index 31 (27,38) kg/m2; HbA1c 9.4 (7.0,12.5)%) and seven matched non-diabetic subjects (HbA1c 5.5 (5.2,5.8)%, fasting plasma glucose 5.4 (5.0,5.7) mmol/l) were given a subcutaneous injection of 1.5 nmol GLP-1/kg body weight (maximally tolerated dose), and 15 min later, plasma glucose (PG) was raised to 15 mmol/l with an intravenous glucose bolus. Results Hypoglycaemia with a PG at or below 2.5 mmol/l was seen in five of the seven healthy subjects after 60,70 min, but PG spontaneously increased again, reaching 3.7 (3.3,4.0) mmol/l at 90 min. In the patients, PG fell slowly and stabilized at 8.6 (4.2,12.1) mmol/l after 80 min. In both groups, glucagon levels initially decreased, but later increased, exceeding basal levels in healthy subjects, in spite of persistent, high concentrations of GLP-1 (P < 0.02). Conclusions Subcutaneous GLP-1 plus intravenous glucose induced reactive hypoglycaemia in healthy subjects, but not in Type 2 diabetic patients. Therefore, a GLP-1-based therapy would not be expected to be associated with an increased risk of hypoglycaemia in Type 2 diabetes mellitus. [source] Involvement of Calmodulin in Glucagon-Like Peptide 1(7-36) Amide-Induced Inhibition of the ATP-Sensitive K+ Channel in Mouse Pancreatic ,-CellsEXPERIMENTAL PHYSIOLOGY, Issue 3 2001W. G. Ding The present investigation was designed to examine whether calmodulin is involved in the inhibition of the ATP-sensitive K+ (KATP) channel by glucagon-like peptide 1(7-36) amide (GLP-1) in mouse pancreatic ,-cells. Membrane potential, single channel and whole-cell currents through the KATP channels, and intracellular free Ca2+ concentration ([Ca2+]i) were measured in single mouse pancreatic ,-cells. Whole-cell patch-clamp experiments with amphotericin-perforated patches revealed that membrane conductance at around the resting potential is predominantly supplied by the KATP channels in mouse pancreatic ,-cells. The addition of 20 nM GLP-1 in the presence of 5 mM glucose significantly reduced the membrane KATP conductance, accompanied by membrane depolarization and the generation of electrical activity. A calmodulin inhibitor N -(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide (W-7, 20 ,M) completely reversed the inhibitory actions of GLP-1 on the membrane KATP conductance and resultant membrane depolarization. Cell-attached patch recordings confirmed the inhibition of the KATP channel activity by 20 nM GLP-1 and its restoration by 20 ,M W-7 or 10 ,M calmidazolium at the single channel level. Bath application of 20 ,M W-7 also consistently abolished the GLP-1-evoked increase in [Ca2+]i in the presence of 5 mM glucose. These results strongly suggest that the mechanisms by which GLP-1 inhibits the KATP channel activity accompanied by the initiation of electrical activity in mouse pancreatic ,-cells include a calmodulin-dependent mechanism in addition to the well-documented activation of the cyclic AMP-protein kinase A system. [source] Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway,HEPATOLOGY, Issue 5 2010Nitika Arora Gupta Glucagon-like peptide 1 (GLP-1) is a naturally occurring peptide secreted by the L cells of the small intestine. GLP-1 functions as an incretin and stimulates glucose-mediated insulin production by pancreatic , cells. In this study, we demonstrate that exendin-4/GLP-1 has a cognate receptor on human hepatocytes and that exendin-4 has a direct effect on the reduction of hepatic steatosis in the absence of insulin. Both glucagon-like peptide 1 receptor (GLP/R) messenger RNA and protein were detected on primary human hepatocytes, and receptor was internalized in the presence of GLP-1. Exendin-4 increased the phosphorylation of 3-phosphoinositide-dependent kinase-1 (PDK-1), AKT, and protein kinase C , (PKC-,) in HepG2 and Huh7 cells. Small interfering RNA against GLP-1R abolished the effects on PDK-1 and PKC-,. Treatment with exendin-4 quantitatively reduced triglyceride stores compared with control-treated cells. Conclusion: This is the first report that the G protein,coupled receptor GLP-1R is present on human hepatocytes. Furthermore, it appears that exendin-4 has the same beneficial effects in vitro as those seen in our previously published in vivo study in ob/ob mice, directly reducing hepatocyte steatosis. Future use for human nonalcoholic fatty liver disease, either in combination with dietary manipulation or other pharmacotherapy, may be a significant advance in treatment of this common form of liver disease. (HEPATOLOGY 2010) [source] Oxyntomodulin reduces expression of glucagon-like peptide 1 receptor in the brainstem of chickensJOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 4 2010A. G. Moghaddam Summary Oxyntomodulin (OXM) is a peptide released from the gut and attenuates food intake by acting on hypothalamus. However, its role at the molecular level is not well studied. In the first section of this study, we analysed the effect of OXM on food intake behaviour after injecting into the lateral ventricle of chickens. The outcome showed that food intake decreased significantly after administering 4 nmol of OXM. In the second part, the expression of glucagon-like peptide 1 receptor (GLP-1R) in the brainstem was analysed by real-time RT-PCR. The results showed that expression of GLP-1R was reduced to 27% and 16% at 30 and 90 mins after injection of OXM respectively. In saline-injected chickens, no reduction in GLP-1R was seen. It can be concluded that OXM has a down regulatory effect on the responding receptor, GLP-1R and OXM in chicks has the same reductive effect on food intake as in the mammals. [source] Exendin-4 regulates pancreatic ABCA1 transcription via CaMKK/CaMKIV pathwayJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 5 2010Junhua Li Abstract ATP-binding cassette transporter A1 (ABCA1) in pancreatic , cells influences insulin secretion and glucose homeostasis. This study investigates whether the long-acting agonist of the glucagon-like peptide 1, namely exendin-4, which mediates stimulatory effects on ABCA1 gene expression, could interfere with the Ca2+/calmodulin (CaM)-dependent protein kinase (CaMK) cascade. ABCA1 promoter activity was examined by reporter gene assay in rat insulin-secreting INS-1 cells incubated with exendin-4. CaMKIV activity was assessed by detection of activation-loop phosphorylation (Thr196) of CaMKIV. We investigated the influence of the constitutively active form (CaMKIVc) or CaMKIV knockdown on ABCA1 expression. Increased abundance of ABCA1 protein was noted in response to rising concentrations of exendin-4 with maximum induction at 10 nM. Exendin-4 also stimulated ABCA1 promoter activity, but failed to do so in the presence of STO-609, a CaMKK inhibitor. Up-regulation of CaMKIV phosphorylation (at Thr196) peaked after 10 min. of exposure to exendin-4. CaMKIVc enhanced or up-regulated ABCA1 promoter activity in INS-1 cells. Furthermore, exendin-4 induction of ABCA1 protein expression was significantly suppressed in cells treated with CaMKIV-siRNA. Activation of the CaMKK/CaMKIV cascade by exendin-4 stimulated ABCA1 gene transcription, indicating that exendin-4 plays an important role in insulin secretion and cholesterol ester content in pancreatic , cells. [source] Gut,Brain Axis: Regulation of Glucose MetabolismJOURNAL OF NEUROENDOCRINOLOGY, Issue 12 2006A. C. Heijboer Obesity and type II diabetes mellitus have reached epidemic proportions. From this perspective, knowledge about the regulation of satiety and food intake is more important than ever. The gut releases several peptides upon feeding, which affect hypothalamic pathways involved in the regulation of satiety and metabolism. Within the hypothalamus, there are complex interactions between many nuclei of which the arcuate nucleus is considered as one of the most important hypothalamic centres that regulates food intake. The neuropeptides, which are present in the hypothalamus and are involved in regulating food intake, also play a key role in regulating glucose metabolism and energy expenditure. In synchrony with the effects of those neuropeptides, gastrointestinal hormones also affect glucose metabolism and energy expenditure. In this review, the effects of the gastrointestinal hormones ghrelin, cholecystokinin, peptide YY, glucagon-like peptide, oxyntomodulin and gastric inhibitory polypeptide on glucose and energy metabolism are reviewed. These gut hormones affect glucose metabolism at different levels: by altering food intake and body weight, and thereby insulin sensitivity; by affecting gastric delay and gut motility, and thereby meal-related fluctuations in glucose levels; by affecting insulin secretion, and thereby plasma glucose levels, and by affecting tissue specific insulin sensitivity of glucose metabolism. These observations point to the notion of a major role of the gut,brain axis in the integrative physiology of whole body fuel metabolism. [source] Protective effects of glucagon-like peptide 2 on intestinal ischemia-reperfusion ratsMICROSURGERY, Issue 4 2008Wei Zhang Ph.D. Our objective was to evaluate the protective effects of glucagon-like peptide 2 (GLP-2) on intestinal ischemia/reperfusion (I/R) rats. Thirty-two rats were randomly assigned to four experimental groups, each of 8: Group A, sham rats underwent laparotomy only, without superior mesenteric artery (SMA) occlusion; Group B, I/R animals underwent laparotomy and occlusion of the SMA for 60 minutes followed by 120 minutes of reperfusion; Group C, I/R animals underwent intestinal I/R, and received pretreatment with GLP-2 for 3 days preoperatively; and Group D, I/R animals underwent intestinal I/R, received pretreatment with GLP-2 as above, and during the reperfusion phase were injected intravenously with GLP-2. After the reperfusion of intestinal ischemia, samples of intestinal mucosa, mesenteric lymph nodes (MLN) and blood were prepared for determination. In the pretreatment rats with GLP-2 (group C), Chiu's scores, bacterial colony counts, serum D -lactate, intestinal mucosal MDA and ET-1, and serum endotoxin, TNF-, and IL-6 were significantly reduced compared with intestinal I/R rats (group B). Administration of GLP-2 during the reperfusion phase following pretreatment (group D) showed further protective effects in comparison with the pretreatment rats (group C). We conclude that treatment with GLP-2 attenuates intestinal I/R injury, reduces bacterial translocation, inhibits the release of oxygen free radicals and ET-1, and may well inhibit the production of proinflammatory cytokines. © 2008 Wiley-Liss, Inc. Microsurgery, 2008. [source] How Palatable Food Disrupts Appetite RegulationBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 2 2005Charlotte Erlanson-Albertsson Hunger signals may be generated in peripheral organs (e.g. ghrelin) but most of them are expressed in the hypothalamus (neuropeptide Y, orexins, agouti-related peptide, melanin concentrating hormone, endogenous opiates and dopamine) and are expressed during situations of energy deficiency. Some satiety signals, such as cholecystokinin, glucagon-like peptide 1, peptide YY and enterostatin are released from the digestive tract in response to food intake. Others, such as leptin and insulin, are mobilized in response to perturbations in the nutritional state. Still others are generated in neurones of the hypothalamus (,-melanocyte-stimulating hormone and serotonin). Satiety signals act by inhibiting the expression of hunger signals and/or by blunting their effect. Palatable food, i.e. food rich in fat and sugar, up-regulates the expression of hunger signals and satiety signals, at the same time blunting the response to satiety signals and activating the reward system. Hence, palatable food offsets normal appetite regulation, which may explain the increasing problem of obesity worldwide. [source] Hormonal and metabolic effects of morning or evening dosing of the dipeptidyl peptidase IV inhibitor vildagliptin in patients with type 2 diabetesBRITISH JOURNAL OF CLINICAL PHARMACOLOGY, Issue 1 2010Yan-Ling He WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT , Vildagliptin is an orally active, potent inhibitor of dipeptidyl peptidase IV and was developed for the treatment of type 2 diabetes. , In clinical trials, once or twice daily dosing with vildagliptin (up to 100 mg day,1) has been shown to reduce endogenous glucose production and fasting plasma glucose in patients with type 2 diabetes. , The comparative efficacy of vildagliptin under a morning vs. evening dosing regimen has not previously been determined. WHAT THIS STUDY ADDS , Once daily dosing with vildagliptin 100 mg for 28 days improved glycaemic control in patients with type 2 diabetes independent of whether vildagliptin was administered in the morning or evening. , Morning or evening dosing with vildagliptin had similar effects on 24 h glycaemic control and plasma concentrations of the hormones insulin, glucagon and glucagon-like peptide 1. AIM This randomized, double-blind, crossover study compared post-prandial hormonal and metabolic effects of vildagliptin, (an oral, potent, selective inhibitor of dipeptidyl peptidase IV [DPP-4]) administered morning or evening in patients with type 2 diabetes. METHODS Forty-eight patients were randomized to once daily vildagliptin 100 mg administered before breakfast or before dinner for 28 days then crossed over to the other dosing regimen. Blood was sampled frequently after each dose at baseline (day ,1) and on days 28 and 56 to assess pharmacodynamic parameters. RESULTS Vildagliptin inhibited DPP-4 activity (>80% for 15.5 h post-dose), and increased active glucagon-like peptide-1 compared with placebo. Both regimens reduced total glucose exposure compared with placebo (area under the 0,24 h effect,time curve [AUE(0,24 h)]: morning ,467 mg dl,1 h, P= 0.014; evening ,574 mg dl,1 h, P= 0.003) with no difference between regimens (P= 0.430). Reductions in daytime glucose exposure (AUE(0,10.5 h)) were similar between regimens. Reduction in night-time exposure (AUE(10.5,24 h) was greater with evening than morning dosing (,336 vs.,218 mg dl,1 h, P= 0.192). Only evening dosing significantly reduced fasting plasma glucose (,13 mg dl,1, P= 0.032) compared with placebo. Insulin exposure was greater with evening dosing (evening 407 µU ml,1 h; morning 354 µU ml,1 h, P= 0.050). CONCLUSIONS Both morning and evening dosing of once daily vildagliptin 100 mg significantly reduced post-prandial glucose in patients with type 2 diabetes; only evening dosing significantly decreased fasting plasma glucose. Although evening dosing with vildagliptin 100 mg tended to decrease night-time glucose exposure more than morning dosing, both regimens were equally effective in reducing 24 h mean glucose exposure (AUE(0,24 h)) in patients with type 2 diabetes. [source] Role of Gastrointestinal Hormones in Postprandial Reduction of Bone Resorption,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2003Dennis B Henriksen Abstract Collagen type I fragments, reflecting bone resorption, and release of gut hormones were investigated after a meal. Investigations led to a dose escalation study with glucagon like peptide-2 (GLP-2) in postmenopausal women. We found a dose-dependent effect of GLP-2 on the reduction of bone resorption. Introduction: The C-terminal telopeptide region of type I collagen as measured in serum (s-CTX) can be used to assess bone resorption. This marker of bone resorption has a significant circadian variation that is influenced by food intake. However, the mediator of this variation has not been identified. Materials and Methods: We studied the release of the gut hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-2 (GLP-2; a representative of the intestinal proglucagon-derived peptides) after ingestion of glucose, fat, protein, and fructose, as well as their effects after parenteral administration in relation to bone turnover processes in healthy volunteers. Furthermore, we studied the effect on bone turnover of a single subcutaneous injection of GLP-2 in four different dosages (100, 200, 400, or 800 ,g GLP-2) or placebo in 60 postmenopausal women (mean age, 61 ± 5 years). Results: All macronutrients significantly (p < 0.05) reduced bone resorption as assessed by s-CTX (39,52% from baseline), and only the glucagon-like peptides were secreted in parallel. Parenteral administration of GIP and GLP-1 did not result in a reduction of the s-CTX level, whereas GLP-2 caused a statistically significant and dose-dependent reduction in the s-CTX level from baseline compared with placebo (p < 0.05). Urine DPD/creatinine, a marker of bone resorption, was significantly reduced by 25% from baseline in the 800-,g GLP-2 group (p < 0.01). An area under the curve (AUC0,8h) analysis for s-CTX after GLP-2 injection confirmed the dose-dependent decrease (ANOVA, p = 0.05). The s-osteocalcin level was unaffected by the GLP-2 treatment. Conclusion: These studies exclude both GIP and GLP-1 as key mediators for the immediate reduction in bone resorption seen after a meal. The dose-dependent reduction of bone resorption markers found after subcutaneous injection of GLP-2 warrants further investigation into the mechanism and importance of GLP-2 for the bone turnover processes. [source] Comparisons of leptin, incretins and body composition in obese and lean patients with hypopituitarism and healthy individualsCLINICAL ENDOCRINOLOGY, Issue 1 2003H. Mersebach Summary objective To identify possible abnormalities specific for obesity in hypopituitary patients. study design Cross-sectional case,control study. measurements and study subjects Body composition (DEXA) and measurements of fasting plasma levels of glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptides (GLPs), insulin, C-peptide, glucose, leptin and lipids were performed in 25 hypopituitary patients (15 obese, 10 normal weight) and 26 BMI and age-matched healthy controls (16 obese, 10 normal weight). All hypopituitary patients had GH deficiency and received adequate substitution therapy on this and other deficient axes (3 ± 1). results Fasting GIP-levels were significantly higher in obese hypopituitary patients compared to lean hypopituitary patients (P < 0·01), while the fasting concentrations of GLP-1 and GLP-2 were comparable between obese and lean hypopituitary patients. The same trend was seen in obese healthy controls vs. lean controls. No differences were observed in glucose, insulin or C-peptide between the hypopituitary patients and the controls. Leptin levels were increased in obese hypopituitary patients compared to lean hypopituitary patients when adjusted for gender. At least a 2-fold higher level of leptin was observed in women compared to men in both patient groups and healthy controls. Lean female hypopituitary patients had higher leptin levels than matched controls. conclusions Fasting levels of GIP were elevated in obese substituted hypopituitary patients, while fasting concentrations of GLPs were similar. Obese hypopituitary patients had the same degree of hyperinsulinaemia, affected glucose tolerance, dyslipoproteinaemia and central obesity as obese healthy controls. Further studies are required to identify the possible biochemical reasons for obesity in patients with apparently well-substituted hypopituitarism. [source] |