Glial Response (glial + response)

Distribution by Scientific Domains


Selected Abstracts


Epileptogenic roles of astroglial death and regeneration in the dentate gyrus of experimental temporal lobe epilepsy

GLIA, Issue 4 2006
Tae-Cheon Kang
Abstract Recent studies have demonstrated that blockade of neuronal death in the hippocampus cannot prevent epileptogenesis in various epileptic models. These reports indicate that neurodegeneration alone is insufficient to cause epilepsy, and that the role of astrocytes in epileptogenesis should be reconsidered. Therefore, the present study was designed to elucidate whether altered morphological organization or the functionalities of astrocytes induced by status epilepticus (SE) is responsible for epileptogenesis. Glial responses (reactive microgliosis followed by astroglial death) in the dentate gyrus induced by pilocarpine-induced SE were found to precede neuronal damage and these alterations were closely related to abnormal neurotransmission related to altered vesicular glutamate and GABA transporter expressions, and mossy fiber sprouting in the dentate gyrus. In addition, newly generated astrocytes showed down-regulated expressions of glutamine synthase, glutamate dehydrogenase, and glial GABA transporter. Taken together, our findings suggest that glial responses after SE may contribute to epileptogenesis and the acquisition of the properties of the epileptic hippocampus. Thus, we believe that it is worth considering new therapeutic approaches to epileptogenesis involving targeting the inactivation of microglia and protecting against astroglial loss. © 2006 Wiley-Liss, Inc. [source]


Pigment epithelium-derived factor supports normal Müller cell development and glutamine synthetase expression after removal of the retinal pigment epithelium

GLIA, Issue 1 2001
Monica M. Jablonski
Abstract In conditions in which the retinal pigment epithelium (RPE) is dystrophic, carries a genetic mutation, or is removed physically, Müller cells undergo degenerative changes that contribute to the retinal pathology. We previously demonstrated that pigment epithelium-derived factor (PEDF), a glycoprotein secreted by the RPE cells with neuroprotective and differentiation properties, protects against photoreceptor degeneration induced by RPE removal. The purpose of the present study was to analyze the putative gliosupportive activity of PEDF on Müller cells of RPE-deprived retinas and assess whether protection of Müller cells was correlated with improved photoreceptor outer segment assembly. Eyes were dissected from Xenopus laevis tadpoles, and the RPE was removed before culturing in medium containing purified PEDF, PEDF plus anti-PEDF, or medium alone. Control eyes matured with an adherent RPE or in medium containing PEDF plus nonimmune serum. Müller cell ultrastructure was examined. Glial fibrillary acidic protein (GFAP) and glutamine synthetase were localized immunocytochemically, and the corresponding protein levels were quantified. In control retinas, Müller cells were structurally intact and formed adherens junctions with neighboring photoreceptors. In addition, they did not express GFAP, whereas glutamine synthetase expression was high. RPE removal dramatically altered the ultrastructure and biosynthetic activity of Müller cells; Müller cells failed to form adherens junctions with photoreceptors and glutamine synthetase expression was suppressed. PEDF prevented the degenerative glial response; Müller cells were ultrastructurally normal and formed junctional complexes with photoreceptors. PEDF also preserved the expression of glutamine synthetase at near-normal levels. The morphogenetic effects of PEDF were blocked by the anti-PEDF antibody. Our study documents the glioprotective effects of PEDF and suggests that maintenance of the proper Müller cell ultrastructure and expression of glutamine synthetase may be necessary to support the proper assembly of photoreceptor outer segments. GLIA 35:14,25, 2001. © 2001 Wiley-Liss, Inc. [source]


Pathogenic role of glial cells in Parkinson's disease

MOVEMENT DISORDERS, Issue 2 2003
Peter Teismann PhD
Abstract An erratum for this article appears in the January, 2004 issue of Movement Disorders (Mov Disord 2004;19:119). Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive loss of the dopaminergic neurons in the substantia nigra pars compacta (SNpc). The loss of these neurons is associated with a glial response composed mainly of activated microglial cells and, to a lesser extent, of reactive astrocytes. This glial response may be the source of trophic factors and can protect against reactive oxygen species and glutamate. Alternatively, this glial response can also mediate a variety of deleterious events related to the production of pro-oxidant reactive species, and pro-inflammatory prostaglandin and cytokines. We discuss the potential protective and deleterious effects of glial cells in the SNpc of PD and examine how those factors may contribute to the pathogenesis of this disease. © 2002 Movement Disorder Society [source]


Selective PrP-like protein, doppel immunoreactivity in dystrophic neurites of senile plaques in Alzheimer's disease

NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 4 2004
I. Ferrer
Doppel (Dpl) is a prion-like protein encoded by the gene PRND, which has been found downstream of the prion gene PRNP in several species. The present study examines by immunohistochemistry Dpl expression in brain samples from 10 patients with Alzheimer's disease (AD), three patients with Pick's disease, four patients with Parkinson's disease, eight patients with diffuse Lewy body disease (DLBD), six patients with sporadic Creutzfeldt,Jakob disease (CJD) methionine/methionine at the codon 129, two patients with sporadic CJD methionine/valine at the codon 129 and numerous kuru plaques in the cerebellum, one patient with fatal familial insomnia (FFI), and 10 age-matched controls. In the adult human brain, Dpl immunoreactivity was restricted to scattered granule cells of the cerebellum and scattered small granules in the cerebral cortex. Dpl immunoreactivity was seen around ,A4 amyloid deposits in neuritic plaques, but not in diffuse plaques, AD and the common form of DLBD. Neurofibrillary tangles, Pick bodies and Lewy bodies were not stained with anti-Dpl antibodies. No modifications in Dpl immunoreactivity were observed in CJD excepting those associated with accompanying senile plaques. No Dpl-positive deposits were seen in FFI. Whether Dpl in neuritic plaques may attenuate amyloid-induced oxidative stress and participate in the glial response around amyloid cores is discussed in light of the few available data on Dpl functions. [source]


In vivo detection of microglial activation in frontotemporal dementia

ANNALS OF NEUROLOGY, Issue 6 2004
Annachiara Cagnin MD
Using positron emission tomography and [11C](R)-PK11195, a marker of "peripheral benzodiazepine sites" that is upregulated on activated microglia during progressive tissue pathology, we show increased binding of [11C](R)-PK11195 in frontotemporal lobar degeneration in the typically affected frontotemporal brain regions. This implies the presence of an active glial response reflecting progressive neuronal degeneration. It also suggests that increased [11C](R)-PK11195 binding, previously demonstrated for Alzheimer's disease, may occur independently from increased amyloid plaque formation, given that it is not a characteristic feature of frontotemporal lobar degeneration. Ann Neurol 2004;56:894,897 [source]


Cannabinoid control of neuroinflammation related to multiple sclerosis

BRITISH JOURNAL OF PHARMACOLOGY, Issue 5 2007
D Baker
The cannabis plant (Cannabis sativa) has been known by many names but the question remains ,Can we call it medicine?' There has been renewed interest in the value of cannabis for the control of neuroinflammatory conditions such as multiple sclerosis, where it has been shown to have some effect on spasticity and pain both experimentally and in clinical trials in humans. However, in addition to symptom control potential, the question remains whether cannabinoids can modify the neuroinflammatory element which drives relapsing neurological attacks and the accumulation of progressive disability. In experimental studies it has been recently shown that synthetic cannabinoids can affect the immune response both indirectly via CB1 receptor-mediated signalling nerve centres controlling the systemic release of immunosuppressive molecules and directly by CB2 receptor-mediated inhibition of lymphocyte and macrophage/microglial cell function. However, these immunosuppressive possibilities that would limit the frequency of relapsing attacks will probably not be realized clinically, following use of medical cannabis, due to dose constraints. However, cannabinoids may still affect the glial response within the damaged central nervous system, which facilitate the slow, neurodegenerative processes that account for progressive neurodegeneration, and therefore may have utility in addition to value of cannabis-related drugs for symptom control. British Journal of Pharmacology (2007) 152, 649,654; doi:10.1038/sj.bjp.0707458; published online 24 September 2007 [source]


Epileptogenic roles of astroglial death and regeneration in the dentate gyrus of experimental temporal lobe epilepsy

GLIA, Issue 4 2006
Tae-Cheon Kang
Abstract Recent studies have demonstrated that blockade of neuronal death in the hippocampus cannot prevent epileptogenesis in various epileptic models. These reports indicate that neurodegeneration alone is insufficient to cause epilepsy, and that the role of astrocytes in epileptogenesis should be reconsidered. Therefore, the present study was designed to elucidate whether altered morphological organization or the functionalities of astrocytes induced by status epilepticus (SE) is responsible for epileptogenesis. Glial responses (reactive microgliosis followed by astroglial death) in the dentate gyrus induced by pilocarpine-induced SE were found to precede neuronal damage and these alterations were closely related to abnormal neurotransmission related to altered vesicular glutamate and GABA transporter expressions, and mossy fiber sprouting in the dentate gyrus. In addition, newly generated astrocytes showed down-regulated expressions of glutamine synthase, glutamate dehydrogenase, and glial GABA transporter. Taken together, our findings suggest that glial responses after SE may contribute to epileptogenesis and the acquisition of the properties of the epileptic hippocampus. Thus, we believe that it is worth considering new therapeutic approaches to epileptogenesis involving targeting the inactivation of microglia and protecting against astroglial loss. © 2006 Wiley-Liss, Inc. [source]