Home About us Contact | |||
Glassy Polymers (glassy + polymer)
Selected AbstractsMeasurement of Spin Diffusion Coefficients in Glassy Polymers: Failure of a Simple Scaling LawMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 2 2008Bernard Meurer Abstract For a series of polymers, the spin diffusion coefficients D do not scale as predicted from a simple expression based on regularly spaced nuclei. We compare D for PVA and polystyrene with their side group either protonated or deuterated. For polystyrene, D is considerably reduced from 600,800 to 65 nm2,·,s,1. For PVA, D is already small for the fully protonated chain and is only slightly reduced from 170 to 130 nm2,·,s,1. This indicates that the rapidly rotating methyl group does not contribute appreciably to spin diffusion between neighboring chains and confirms that the mean proton density is not the pertinent parameter to control D. [source] A novel approach to the analysis of distributed shear banding in polymer blendsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 5 2003K. G. W. Pijnenburg Abstract The toughness of glassy polymers can be enhanced by blending with rubber particles. The consensus is that this toughening is due to massive plastic deformation of the matrix that takes place once the particles have cavitated. Micromechanical studies of regular stackings of particles in a polymer matrix have provided much insight into the localized plastic flow in blends at the microscale of individual particles (or voids, once cavitated). Even some steps towards macroscopic constitutive models have been made. However, at intermediate length scales (i.e. larger than several particles, but smaller than the scale at which the material may be regarded as homogeneous) the situation is unclear. It is this length scale that becomes important around crack tips, for example, where a thorough understanding of the toughening effect has to be derived from. In this paper, we therefore present a novel approach to the analysis of distributed shear banding in polymer,rubber blends. A coarse-grain description, in which much of the morphology is retained but the local shear banding is idealized into ,shear surfaces', will enable us to analyse ensembles with large numbers of particles. The parameters of this model will be validated with results from detailed cell analyses. Copyright © 2003 John Wiley Sons, Ltd. [source] Improvement of the Long-Term Performance of Impact-Modified Polycarbonate by Selected Heat TreatmentsMACROMOLECULAR MATERIALS & ENGINEERING, Issue 2 2009Tom A. P. Engels Abstract Next to the intended increase of the impact toughness, impact modification of polycarbonate generally results in an unwanted decrease in yield stress and time-to-failure under constant stress. It is demonstrated that this loss in strength can be fully compensated for by an annealing treatment, or by increasing the mold temperature. The influence of impact modification on the short- and long-term strengths of glassy polymers is predicted by the extension of existing models with a scaling rule based on the filler volume percentage. Introduction of this scaling rule in the evolution of yield stress during physical aging even allows for the direct prediction of yield stress on the basis of processing conditions. [source] Mixed matrix membrane materials with glassy polymers.POLYMER ENGINEERING & SCIENCE, Issue 7 2002Part Mixed matrix materials comprising molecular sieve entities embedded in a polymer matrix can economically increase membrane permselectivity, thereby addressing a key challenge hindering the widespread use of membrane-based gas separations. Prior work has clarified the importance of proper selection of the dispersed sieve phase and the continuous matrix phase based on their intrinsic transport properties. Proper material selection for the two components, while necessary, is not sufficient since the interfacial contact zone appears to be equally important to achieve optimum transport properties. Specifically, it was found that chemical coupling of the sieve to the polymer can lead to better macroscopic adhesion but to even poorer transport properties than in the absence of the adhesion promoter. This counterintuitive behavior may be attributed to a nanometric region of disturbed packing at the polymer sieve interphase. The poor properties are believed to result from "leakage" of gas molecules along this nanometric interface. The Maxwell model was modified to take into account these complexities and to provide a first order quantification of the nanometric interphase. The analysis indicates that optimization of the transport properties of the interfacial region is key to the formation of ideal mixed matrix materials. This approach is used in the second part of this paper to form successful mixed matrix membrane materials. [source] Mixed matrix membrane materials with glassy polymers.POLYMER ENGINEERING & SCIENCE, Issue 7 2002Part Analysis presented in Part 1 of this paper indicated the importance of optimization of the transport properties of the interfacial region to achieve ideal mixed matrix materials. This insight is used in this paper to guide mixed matrix material formation with more conventional gas separation polymers. Conventional gas separation materials are rigid, and, as seen earlier, lead to the formation of an undesirable interphase under conventional casting techniques. We show in this study that if flexibility can be maintained during membrane formation with a polymer that interacts favorably with the sieve, successful mixed matrix materials result, even with rigid polymeric materials. Flexibility during membrane formation can be achieved by formation of films at temperatures close to the glass transition temperature of the polymer. Moreover, combination of chemical coupling and flexibility during membrane formation produces even more significant improvements in membrane performance. This approach leads to the formation of mixed matrix material with transport properties exceeding the upper bound currently achieved by conventional membrane materials. Another approach to form successful mixed matrix materials involves tailoring the interface by use of integral chemical linkages that are intrinsically part of the chain backbone. Such linkages appear to tighten the interface sufficiently to prevent "nonselective leakage" along the interface. This approach is demonstrated by directly bonding a reactive polymer onto the sieve surface under proper processing conditions. [source] A uniform phenomenological constitutive model for glassy and semicrystalline polymersPOLYMER ENGINEERING & SCIENCE, Issue 8 2001Y. Duan A phenomenological constitutive model is proposed on the basis of four models: the Johnson-Cook model, the G'Sell-Jonas model, the Matsuoka model, and the Brooks model. The proposed constitutive model has a concise expression of stress dependence on strain, strain rate and temperature. It is capable of uniformly describing the entire range of deformation behavior of glassy and semicrystalline polymers, especially the intrinsic strain softening and subsequent orientation hardening of glassy polymers. At least three experimental stress-strain curves including variation with strain rate and temperature are needed to calibrate the eight material coefficients. Sequential calibration procedures of the eight material coefficients are given in detail. Predictions from the proposed constitutive model are compared with experimental data of two glassy polymers, polymethyl-methacrylate and polycarbonate under various deformation conditions, and with that of the G'Sell-Jonas model for polyamide 12, a semicrystalline polymer. [source] |