Home About us Contact | |||
Glass Fiber Surface (glass + fiber_surface)
Selected AbstractsStudy of interphase in glass fiber,reinforced poly(butylene terephthalate) compositesPOLYMER COMPOSITES, Issue 1 2004A. Bergeret It is well known that application of a coupling agent to a glass fiber surface will improve fiber/matrix adhesion in composites. However, on commercial glass fibers the coupling agent forms only a small fraction of the coating, the larger part being a mixture of processing aids whose contribution to composite properties is not well defined. The interfacial region of the composite will therefore be affected by the coating composition but also by the chemical reactions involved in the vicinity of the fiber and inside the surrounding matrix. The main feature of this study consists in dividing the interface region into two separate regions: the fiber/sizing interphase and the sizing/matrix interphase. A wide range of techniques was used, including mechanical and thermomechanical tests, infrared spectroscopy, gel permeation chromatography, carboxyl end group titrations, extraction rate measurements, and viscosity analysis. Experiments were performed on poly(butylene terephthalate) composites and results indicate that the adhesion improvement is due to the presence of a short chain coupling agent and of a polyfunctional additive, which may react both with the coupling agent and the matrix. According to the nature of this additive, it may be possible to soften the interphase and then to increase the composite impact strength. [source] Adhesion improvement in glass fiber reinforced polyethylene composite via admicellar polymerizationPOLYMER COMPOSITES, Issue 1 2003Usa Somnuk Admicellar polymerization (polymerization of monomer solubilized in adsorbed surfactant bilayers) has been used to form a thin film of polyethylene onto the surface of milled glass fibers using sodium dodecyl sulfate as the surfactant. The decrease in ethylene pressure was used to follow the solubilization and adsolubilization processes as well as the reaction processes. An increase in initiator (Na2S2O8) to surfactant ratio gave thicker and more uniform coatings of polymer onto the glass fiber surface according to SEM micrographs. Although a substantial amount of ethylene polymerized in solution according to the pressure drop, the decrease in pressure attributed to admicelle polymerization corresponded to the amount of polymer formed on the glass fiber, indicating little, if any, solution polymer deposited on the fibers. The admicellar-treated glass fiber was used to make composites with high-density polyethylene. The composites showed an increase in tensile and flexural strength over composites made from as-received glass fiber, indicating an improvement in the fiber-matrix adhesion of the admicellar-treated glass fiber. [source] Glass Fibers with Carbon Nanotube Networks as Multifunctional SensorsADVANCED FUNCTIONAL MATERIALS, Issue 12 2010Shang-lin Gao Abstract A simple approach to deposit multiwalled carbon nanotube (MWNT) networks onto glass fiber surfaces achieving semiconductive MWNT,glass fibers is reported, along with application of fiber/polymer interphases as in-situ multifunctional sensors. This approach demonstrates for the first time that the techniques of conducting electrical resistance measurements could be applicable to glass fibers for in situ sensing of strain and damage; the techniques were previously limited to conductive and semiconductive materials. The electrical properties of the single MWNT,glass fiber and the "unidirectional" fiber/epoxy composite show linear or nonlinear stress/strain, temperature, and relative humidity dependencies, which are capable of detecting piezoresistive effects as well as the local glass transition temperature. The unidirectional composites containing MWNT,glass fibers exhibit ultrahigh anisotropic electrical properties and an ultralow electrical percolation threshold. Based on this approach, the glass fiber,the most widely used reinforcement in composites globally,along with the surface electrical conductivity of MWNTs will stimulate and realize a broad range of multifunctional applications. [source] Interfacial strength in short glass fiber reinforced acrylonitrile-butadiene-styrene/polyamide 6 blendsPOLYMER COMPOSITES, Issue 3 2010Nihat Ali Isitman The purpose of this study is to derive the apparent interfacial shear strength of short glass fiber reinforced acrylonitrile-butadiene-styrene/polyamide 6 (PA6) blends with different PA6 contents. Tensile stress-strain curves and fiber length distributions are utilized within a continuum micromechanics approach which involves a unified parameter for fiber length distribution efficiency represented as a function of strain. The unique combination of predicted micromechanical parameters is capable of accurately reproducing the mechanical response of the composite to applied strain. In this way, the influence of PA6 on interfacial zone is revealed by outcomes of the predictive method and validated by scanning electron microscopy observations. Favored intermolecular interactions in presence of PA6 chains result in the formation of a PA6 sheathing layer on glass fiber surfaces which in turn causes a drop in the apparent interfacial shear strength. The reason behind is shown to be the shift of the fracture zone from fiber/matrix interface to sheathing layer/matrixinterphase. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers [source] |