Gland Ducts (gland + duct)

Distribution by Scientific Domains


Selected Abstracts


Multiple, large sialoliths of the submandibular gland duct: a case report

AUSTRALIAN DENTAL JOURNAL, Issue 1 2009
TC Huang
Abstract This paper reviews the major clinical and radiographic features of sialoliths and illustrates these with an unusual case of multiple sialoliths within the submandibular gland duct. The differential diagnosis of other calcific structures both within and outside the salivary gland that may mimic a sialolith is also presented. [source]


Anatomy and systematics of the minute syrnolopsine gastropods from Lake Tanganyika (Caenogastropoda, Cerithioidea, Paludomidae)

ACTA ZOOLOGICA, Issue 4 2008
Ellen E. Strong
Abstract The minute syrnolopsine gastropods endemic to Lake Tanganyika have been allied to a number of freshwater, marine and terrestrial groups as a consequence of superficial conchological similarity. Although early anatomical studies confirmed the cerithioid organization of this clade, their close relationship to other lake species was not consistently recognized. In several recent cladistic analyses based on molecular data, the higher taxonomic placement and sister group relationships of syrnolopsines have been unstable. The present analysis confirms that syrnolopsines possess a spermatophore-forming organ , a synapomorphy of the Paludomidae , corroborating their placement in this family. Consistent with the molecular data, syrnolopsine monophyly is supported by two characters that occur exclusively in this group (salivary gland ducts that bypass the nerve ring and a linear albumen gland). Several characters in Martelia tanganyicensis, the most diminutive syrnolopsine , are only evident in the smallest lake species thus far investigated (Bridouxia, Stormsia) namely reduction of ctenidial leaflets, sorting area, intestine length and number of statoconia. These features are interpreted as being correlated with reduction in size. Nevertheless, close examination reveals differences in detail that allow more refined hypotheses of homology and are consistent with their independent origin. [source]


Stimulation of keratinocyte differentiation , a new role for the vanilloid receptor subtype 1 (VR1/TRPV1)?

EXPERIMENTAL DERMATOLOGY, Issue 2 2005
Sonja Ständer
Vanilloids and endogenous cannabinoids mediate their actions via the vanilloid receptor subtype 1 (VR1/TRPV1), a non-selective cation channel, which is widely distributed in the central and peripheral nervous system. Only recently, VR1 has been shown to be expressed in keratinocytes in vitro and in vivo. However, a precise description of VR1 localization in epithelial cells was missing. To determine this, we investigated VR1-immunoreactivity as well as mRNA and protein expression in a series of biopsies from normal, diseased, and capsaicin-treated human skin. VR1 was found in epidermal keratinocytes, the inner root sheet and the infundibulum of hair follicles, differentiated sebocytes, sweat gland ducts, and the secretory portion of eccrine sweat glands upon immunohistochemistry, RT-PCR and Western blot analysis. Interestingly, in diseased skin such as prurigo nodularis, psoriasis vulgaris, and atopic dermatitis, VR1 expression in keratinocytes correlated with the degree of epidermal differentiation. Enhanced VR1 immunoreactivity and protein content was found in prurigo nodularis in which epidermal keratinocytes are highly differentiated. Under effective capsaicin therapy of prurigo nodularis, the epidermis thinned and the distribution pattern of VR1 on epidermal keratinocytes normalized. In psoriasis vulgaris, a disease with disturbed epidermal differentiation, less intense immunostaining for VR1 was observed. This could be confirmed by western blot analysis showing less VR1 protein amount in comparison to prurigo nodularis although histologically both showed a thickened epidermis. In atopic dermatitis, which is characterized by a moderate epidermal hyperplasia only and regular differentiated keratinocytes, VR1 immunoreactivity was unchanged in comparison to normal skin. These findings suggest that VR1 may contribute to regular differentiation of keratinocytes. VR1 activation opens non-selective cation channels with high permeability to calcium, a ion that is crucially important for the synthesis of cornification proteins such as involucrin, fillagrin and loricrin. The role of VR1 in other epithelial cells of appendage structures remains to be determined. In summary, VR1 is widely distributed in the skin suggesting a central role for this receptor not only in nociception but also maturation and function of epithelial cells. [source]


Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures

EXPERIMENTAL DERMATOLOGY, Issue 3 2004
Sonja Ständer
Abstract:, The vanilloid receptor subtype 1 (VR1)/(TRPV1), binding capsaicin, is a non-selective cation channel that recently has been shown in human keratinocytes in vitro and in vivo. However, a description of VR1 localization in other cutaneous compartments in particular cutaneous nerve fibers is still lacking. We therefore investigated VR1 immunoreactivity as well as mRNA and protein expression in a series (n = 26) of normal (n = 7), diseased (n = 13) [prurigo nodularis (PN) (n = 10), generalized pruritus (n = 1), and mastocytosis (n = 2)], and capsaicin-treated human skin (n = 6). VR1 immunoreactivity could be observed in cutaneous sensory nerve fibers, mast cells, epidermal keratinocytes, dermal blood vessels, the inner root sheet and the infundibulum of hair follicles, differentiated sebocytes, sweat gland ducts, and the secretory portion of eccrine sweat glands. Upon reverse transcriptase-polymerase chain reaction and Western blot analysis, VR1 was detected in mast cells and keratinocytes from human skin. In pruritic skin of PN, VR1 expression was highly increased in epidermal keratinocytes and nerve fibers, which was normalized after capsaicin application. During capsaicin therapy, a reduction of neuropeptides (substance P, calcitonin gene-related peptide) was observed. After cessation of capsaicin therapy, neuropeptides re-accumulated in skin nerves. In conclusion, VR1 is widely distributed in the skin, suggesting a major role for this receptor, e.g. in nociception and neurogenic inflammation. [source]


Cystic fibrosis and airway submucosal glands

PEDIATRIC PULMONOLOGY, Issue 4 2005
S.K. Inglis PhD
Abstract The chronic pulmonary infections and inflammation associated with cystic fibrosis (CF) are responsible for almost all the morbidity and mortality of this disease. Our understanding of the mechanisms that underlie the very early stages of CF lung disease, that result directly from mutations in the CF gene, is relatively poor. However, the demonstration that the predominant sites of expression of the CF gene in normal lungs are the submucosal glands, together with the histological observations showing that hyperplasia of these glands and mucin occlusion of the gland ducts are the earliest signs of disease in the CF lung, suggest that malfunction of the submucosal glands may be an important factor contributing to the early pathophysiology of CF lung disease. This review describes the function of submucosal glands in normal lungs, and the way in which their function may be disrupted in CF and may thus contribute to the early stages of CF lung disease. © 2005 Wiley-Liss, Inc. [source]