Germinal Zones (germinal + zone)

Distribution by Scientific Domains


Selected Abstracts


The SDF-1/CXCR4 pathway and the development of the cerebellar system

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2005
Tim O. Vilz
Abstract Mice deficient for the chemokine receptor CXCR4 show premature translocation of granule cell neuroblasts from their germinal zone into the nascent cerebellum [Y.-R. Zuo et al. (1998)Nature, 393, 595,599]. Here, we used CXCR4-null mice to analyse the early development of cerebellar cortical inhibitory interneurons and pontine neurons which, in the adult, are synaptically integrated with granule cells. Cortical inhibitory interneuronal precursors normally invade the cerebellar anlage of CXCR4-deficient mice, but their dispersal is impeded by dislocated foci of proliferating granule cells, from which they are excluded. This is reminiscent of the strict exclusion of inhibitory interneuronal precursors from the superficial external granule cell layer. As inhibitory interneuronal precursors readily mingle with post-mitotic granule cells both in wild-type and CXCR4-null mice, these findings indicate that the developmentally regulated interactions between granule and inhibitory interneuronal precursors are independent of SDF-1/CXCR4 signalling. In contrast, the transit of pontine neurons from the rhombic lip through the anterior extramural stream to the basilar pons is disrupted in CXCR4-deficient animals. Migrating pontine neurons express CXCR4, and in CXCR4-null animals these cells are found displaced deep into the brainstem. Consequently, nascent pontine nuclei in CXCR4-deficient animals are hypoplastic. Moreover, they fail to express plexin D1, suggesting that SDF-1/CXCR4 signalling may also impinge on axon guidance critical to the orderly formation of granule cell mossy fibre afferents. [source]


Inactivation of the gene for the nuclear receptor tailless in the brain preserving its function in the eye

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2007
Thorsten Belz
Abstract During embryogenesis, tailless, an orphan member of the nuclear receptor family, is expressed in the germinal zones of the brain and the developing retina, and is involved in regulating the cell cycle of progenitor cells. Consequently, a deletion of the tailless gene leads to decreased cell number with associated anatomical defects in the limbic system, the cortex and the eye. These structural abnormalities are associated with blindness, increased aggressiveness, poor performance in learning paradigms and reduced anxiousness. In order to assess the contribution of blindness to the behavioural changes, we established tailless mutant mice with intact visual abilities. We generated a mouse line in which the second exon of the tailless gene is flanked by loxP sites and crossed these animals with a transgenic line expressing the Cre recombinase in the neurogenic area of the developing brain, but not in the eye. The resulting animals have anatomically indistinguishable brains compared with tailless germline mutants, but are not blind. They are less anxious and much more aggressive than controls, like tailless germline mutants. In contrast to germline mutants, the conditional mutants are not impaired in fear conditioning. Furthermore, they show good performance in the Morris water-maze despite severely reduced hippocampal structures. Thus, the pathological aggressiveness and reduced anxiety found in tailless germline mutants are due to malformations caused by inactivation of the tailless gene in the brain, but the poor performance of tailless null mice in learning and memory paradigms is dependent on the associated blindness. [source]


Temporal expression changes during differentiation of neural stem cells derived from mouse embryonic stem cell

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2004
Joon-Ik Ahn
Abstract Temporal analysis in gene expression during differentiation of neural stem cells (NSCs) was performed by using in-house microarrays composed of 10,368 genes. The changes in mRNA level were measured during differentiation day 1, 2, 3, 6, 12, and 15. Out of 10,368 genes analyzed, 259 genes were up-regulated or down-regulated by 2-fold or more at least at one time-point during differentiation, and were classified into six clusters based on their expression patterns by K-means clustering. Clusters characterized by gradual increase have large numbers of genes involved in transport and cell adhesion; those which showed gradual decrease have much of genes in nucleic acid metabolism, cell cycle, transcription factor, and RNA processing. In situ hybridization (ISH) validated microarray data and it also showed that Fox M1, cyclin D2, and CDK4 were highly expressed in CNS germinal zones and ectonucleotide pyrophosphatase/phosphodiesterase 2 (Enpp2) was highly expressed in choroid plexus where stem/progenitor cells are possibly located. Together, this clustering analysis of expression patterns of functionally classified genes may give insight into understanding of CNS development and mechanisms of NSCs proliferation and differentiation. © 2004 Wiley-Liss, Inc. [source]


Developmental profile of ErbB receptors in murine central nervous system: Implications for functional interactions

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2005
Irina J. Fox
Abstract The ErbB family, ErbB1 (also known as the epidermal growth factor receptor EGFR), ErbB2, ErbB3, and ErbB4 comprise a group of receptor tyrosine kinases that interact with ligands from the epidermal growth factor (EGF) superfamily, subsequently dimerize, catalytically activate each other by cross-phosphorylation, and then stimulate various signaling pathways. To gain a better understanding of in vivo functions of ErbB receptors in the central nervous system, the current study examined their mRNA expression throughout development in the mouse brain via in situ hybridization. EGFR, ErbB2, and ErbB4 exhibited distinct but sometimes overlapping distributions in multiple cell types within germinal zones, cortex, striatum, and hippocampus in prenatal and postnatal development. In addition, a subpopulation of cells positive for ErbB4 mRNA in postnatal cortex and striatum coexpressed mRNA for either EGFR or GAD67, a marker for ,-aminobutyric acid (GABA)ergic interneurons, suggesting that both ErbB4 and EGFR are coexpressed in GABAergic interneurons. In contrast, ErbB3 mRNA was not detected within the brain during development and only appeared in white matter tracts in adulthood. Together, these findings suggest that ErbB receptors might mediate multiple functions in central nervous system development, some of which may be initiated by EGFR/ErbB4 heterodimers in vivo. © 2005 Wiley-Liss, Inc. [source]


Proliferation and neurogenesis of neural stem cells enhanced by cerebral microvascular endothelial cells

MICROSURGERY, Issue 1 2008
Ying Guo M.D.
In adult mammalian brain, vascular cells reside throughout life, close to central nervous system germinal zones, and neural stem cells (NSCs) mainly localize in the dentate gyrus of the hippocampus, subventricular zone, and olfactory bulb. Microvessels appear to produce a special microenvironment that may influence the characteristics of NSCs. To explore this potential correlation, an in vitro model with cocultured cerebral microvascular endothelial cells (CMECs) and NSCs was established in our study by using a transwell coculture system. The expression of nestin and NF in the early stage of coculture, and NF in the late stage, was detected by immunostaining. The results demonstrated that CMECs can stimulate self-renewal of NSCs and inhibit their differentiation, implying the potential of CMECs in promoting the neural differentiation of NSCs. © 2007 Wiley-Liss, Inc. Microsurgery, 2008. [source]


Identification of the Tctex-1 regulatory element that directs expression to neural stem/progenitor cells in developing and adult brain

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 16 2010
Yun-Yu Tseng
Abstract Previous studies showed that Tctex-1 immunoreactivity is selectively enriched in the germinal zones of adult brain. In this report we identify a regulatory region of the Tctex-1 gene that is capable of directing transgenic expression of green fluorescent protein (GFP) reporter that recapitulates the spatial and temporal expression pattern of endogenous Tctex-1. This construct specifically targeted expression to the nestin+/Pax6+/GLAST+ radial glial cells and Tbr2+ intermediate progenitors when the reporter construct was delivered to developing mouse neocortex via in utero electroporation. Characterization of mice transgenically expressing GFP under the same regulatory element showed that the GFP expression is faithful to endogenous Tctex-1 at the subgranular zone (SGZ) of dentate gyrus, ventricular/subventricular zone of lateral ventricles, and ependymal layer of 3rd ventricle of adult brains. Immunolocalization and bromodeoxyuridine incorporation studies of adult SGZ in four independent mouse lines showed that Tctex-1:GFP reporter selectively marks nestin+/GFAP+/Sox2+ neural stem-like cells in two mouse lines (4 and 13). In two other mouse lines (17 and 18), Tctex-1:GFP is selectively expressed in Type-2 and Type-3 transient amplifying progenitors and a small subset of young neuronal progeny. The P/E-Tctex-1 reporter mouse studies independently confirmed the specific enrichment of Tctex-1 at adult SGZ stem/progenitor cells. Furthermore, these studies supported the notion that an analogous transcriptional program may be used to regulate neurogenesis in embryonic cerebral cortex and adult hippocampus. Finally, the genomic sequences and the reporter mouse lines described here provide useful experimental tools to advance adult neural stem cell research. J. Comp. Neurol. 518:3327,3342, 2010. © 2010 Wiley-Liss, Inc. [source]