Germ Layers (germ + layer)

Distribution by Scientific Domains


Selected Abstracts


Fibroblast elongation and dendritic extensions in constrained versus unconstrained microtissues

CYTOSKELETON, Issue 3 2009
Dylan M. Dean
Abstract Cytoskeletal tension is fundamental to many biological processes, including germ layer sorting during embryogenesis [Krieg et al., 2008]. In vitro, such tension influences cell sorting in self-assembled, 3D microtissues and can be of sufficient magnitude to cause complex-shaped microtissue failure [Dean et al., 2007]. To examine the process of failure under cell-derived tension, we subjected normal human fibroblasts (NHFs) to directed self-assembly [Dean et al., 2007] in micro-molds designed to yield self-constraining microtissues. As cells contracted in this assay, the constrained microtissues narrowed, thinned and ultimately failed at their midpoints. By adding small numbers of GFP+ cells, changes in cell movement and morphology were assessed and compared to those of unconstrained microtissues. We found that cells formed numerous dendritic extensions within an hour of self-assembly and retracted these extensions as they elongated up to 30 times their initial diameter (,600 ,m) just prior to failure. Surprisingly, significant coordination in cell motility was observed over large distances within microtissues. Pharmacologic interventions showed that failure was myosin II and Rho kinase dependent and inhibition of failure resulted in shorter cells with greater numbers of extensions. These findings further our understanding of cellular self-assembly and introduce the use of GFP+ cells with directed self-assembly as a scaffold-free analogue to fibroblast-populated collagen gels (FPCGs). Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc. [source]


Identification of molecular markers that are expressed in discrete anterior,posterior domains of the endoderm from the gastrula stage to mid-gestation

DEVELOPMENTAL DYNAMICS, Issue 7 2007
Billie A. Moore-Scott
Abstract Little is known about how the endoderm germ layer is patterned along the anterior,posterior (A-P) axis before the formation of a gut tube (embryonic day [e] 7.5,8.5 in mouse), largely due to a paucity of molecular markers of endoderm. In particular, there are few genes that mark posterior domains of endoderm that give rise to the midgut and hindgut. We have identified 8 molecular markers that are expressed in discrete domains of the gastrula stage endoderm (e7.5), suggesting that a significant level of pattern exists in the endoderm before the formation of a gut tube. Three genes Tmprss2, NM_029639, and Dsp are expressed in a presumptive midgut domain overlying the node, a domain for which molecular markers have not previously been identified. Two genes, Klf5 and Epha2 are expressed in posterior endoderm associated with the primitive streak. Expression of these five genes persists in the midgut and/or hindgut at e8.5, 9.5 and 10.5, suggesting that these genes are markers of these domains throughout these stages of development. We have identified three genes Slc39a8, Amot, and Dp1l1, which are expressed in the visceral endoderm at e7.5. Starting at e9.5, Dp1l1 is expressed de novo in the liver, midgut, and hindgut. Our findings suggest that presumptive midgut and hindgut domains are being established at the molecular level by the end of gastrulation, earlier than previously thought, and emphasize the importance of endoderm patterning before the formation of the fetal gut. Developmental Dynamics 236:1997,2003, 2007. © 2007 Wiley-Liss, Inc. [source]


Morphogenetic domains in the yolk syncytial layer of axiating zebrafish embryos

DEVELOPMENTAL DYNAMICS, Issue 4 2001
Leonard A. D'Amico
Abstract The yolk syncytial layer (YSL) of the teleostean yolk cell is known to play important roles in the induction of cellular mesendoderm, as well as the patterning of dorsal tissues. To determine how this extraembryonic endodermal compartment is subdivided and morphologically transformed during early development, we have examined collective movements of vitally stained YSL nuclei in axiating zebrafish embryos by using four-dimensional confocal microscopy. During blastulation, gastrulation, and early segmentation, zebrafish YSL nuclei display several highly patterned movements, which are organized into spatially distinct morphogenetic domains along the anterior-posterior and dorsal-ventral axes. During the late blastula period, with the onset of epiboly, nuclei throughout the YSL initiate longitudinal movements that are directed along the animal-vegetal axis. As epiboly progresses, nuclei progressively recede from the advancing margin of the epibolic YSL. However, a small group of nuclei is retained at the YSL margin to form a constricting blastoporal ring. During mid-gastrulation, YSL nuclei undergo convergent-extension behavior toward the dorsal midline, with a subset of nuclei forming an axial domain that underlies the notochord. These highly patterned movements of YSL nuclei share remarkable similarities to the morphogenetic movements of deep cells in the overlying zebrafish blastoderm. The macroscopic shape changes of the zebrafish yolk cell, as well as the morphogenetic movements of its YSL nuclei, are homologous to several morphogenetic behaviors that are regionally expressed within the vegetal endodermal cell mass of gastrulating Xenopus embryos. In contrast to the cellular endoderm of Xenopus, the dynamics of zebrafish YSL show that a syncytial endodermal germ layer can express a temporal sequence of morphogenetic domains without undergoing progressive steps of cell fate restriction. © 2001 Wiley-Liss, Inc. [source]


The neural crest as a fourth germ layer and vertebrates as quadroblastic not triploblastic

EVOLUTION AND DEVELOPMENT, Issue 1 2000
Brian K. Hall
No abstract is available for this article. [source]


Cells from bone marrow that evolve into oral tissues and their clinical applications

ORAL DISEASES, Issue 1 2007
OM Maria
There are two major well-characterized populations of post-natal (adult) stem cells in bone marrow: hematopoietic stem cells which give rise to blood cells of all lineages, and mesenchymal stem cells which give rise to osteoblasts, adipocytes, and fibroblasts. For the past 50 years, strict rules were taught governing developmental biology. However, recently, numerous studies have emerged from researchers in different fields suggesting the unthinkable , that stem cells isolated from a variety of organs are capable of ignoring their cell lineage boundaries and exhibiting more plasticity in their fates. Plasticity is defined as the ability of post-natal (tissue-specific adult) stem cells to differentiate into mature and functional cells of the same or of a different germ layer of origin. There are reports that bone marrow stem cells can evolve into cells of all dermal lineages, such as hepatocytes, skeletal myocytes, cardiomyocytes, neural, endothelial, epithelial, and even endocrine cells. These findings promise significant therapeutic implications for regenerative medicine. This article will review recent reports of bone marrow cells that have the ability to evolve or differentiate into oral and craniofacial tissues, such as the periodontal ligament, alveolar bone, condyle, tooth, bone around dental and facial implants, and oral mucosa. [source]


Endoderm development in vertebrates: fate mapping, induction and regional specification

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 6 2005
Kimiko Fukuda
The formation of the vertebrate body plan begins with the differentiation of cells into three germ layers: ectoderm, mesoderm and endoderm. Cells in the endoderm give rise to the epithelial lining of the digestive tract, associated glands and respiratory system. One of the fundamental problems in developmental biology is to elucidate how these three primary germ layers are established from the homologous population of cells in the early blastomere. To address this question, ectoderm and mesoderm development have been extensively analyzed, but study of endoderm development has only begun relatively recently. In this review, we focus on the ,where', ,when' and ,how' of endoderm development in four vertebrate model organisms: the zebrafish, Xenopus, chick and mouse. We discuss the classical fate mapping of the endoderm and the more recent progress in characterizing its induction, segregation and regional specification. [source]


MicroRNA expression during chick embryo development

DEVELOPMENTAL DYNAMICS, Issue 11 2006
Diana K. Darnell
Abstract MicroRNAs (miRNAs) are small, abundant, noncoding RNAs that modulate protein abundance by interfering with target mRNA translation or stability. miRNAs are detected in organisms from all domains and may regulate 30% of transcripts in vertebrates. Understanding miRNA function requires a detailed determination of expression, yet this has not been reported in an amniote species. High-throughput whole mount in situ hybridization was performed on chicken embryos to map expression of 135 miRNA genes including five miRNAs that had not been previously reported in chicken. Eighty-four miRNAs were detected before day 5 of embryogenesis, and 75 miRNAs showed differential expression. Whereas few miRNAs were expressed during formation of the primary germ layers, the number of miRNAs detected increased rapidly during organogenesis. Patterns highlighted cell-type, organ or structure-specific expression, localization within germ layers and their derivatives, and expression in multiple cell and tissue types and within sub-regions of structures and tissues. A novel group of miRNAs was highly expressed in most tissues but much reduced in one or a few organs, including the heart. This study presents the first comprehensive overview of miRNA expression in an amniote organism and provides an important foundation for investigations of miRNA gene regulation and function. Developmental Dynamics 235:3156,3165, 2006. © 2006 Wiley-Liss, Inc. [source]


Characterization of Bves expression during mouse development using newly generated immunoreagents

DEVELOPMENTAL DYNAMICS, Issue 6 2006
Travis K. Smith
Abstract Bves (blood vessel/epicardial substance) is a transmembrane protein postulated to play a role in cell,cell interaction/adhesion. It was independently isolated by two groups as a gene product highly enriched in the developing heart. Disagreement exists about its expression during development. Most notably, the expression of Bves in non-muscle cells is disputed. Determining the expression profile of Bves is a critical initial step preceding the characterization of protein function in development and in the adult. We have generated new monoclonal antibodies against mouse Bves and used these immunoreagents to elucidate Bves expression in development. As expected, we detect Bves in myocytes of the developing heart throughout development. In addition, skeletal and smooth muscle cells including those of the coronary system express Bves. Finally, specific, but not all, epithelial derivatives of the three germ layers are stained positively with these monoclonal antibodies. Protein expression in cultured epithelial and muscle cell lines corroborate our in vivo findings. Taken together, these results demonstrate the expression of Bves in a wide range of epithelial and muscle cells during mouse embryogenesis and indicate a broad function for this protein in development, and show that these newly generated reagents will be invaluable in further investigation of Bves. Developmental Dynamics 235:1701,1708, 2006. © 2006 Wiley-Liss, Inc. [source]


Retinoids and nonvertebrate chordate development

DEVELOPMENTAL NEUROBIOLOGY, Issue 7 2006
Shigeki Fujiwara
Abstract Retinoic acid (RA) is required for the differentiation and morphogenesis of chordate-specific features, such as the antero-posterior regionalization of the dorsal hollow nerve cord and neural crest cells. RA receptors (RARs) have been reported exclusively in chordates, suggesting that the acquisition of the RAR gene was important for chordate evolution. A scenario is presented here for the establishment of an RAR-mediated developmental regulatory system during the course of chordate evolution. In the common chordate ancestor, RAR came to control the spatial expression pattern of Hox genes in the ectoderm and endoderm along the antero-posterior axis. In these germ layers, RA was required for the differentiation of epidermal sensory neurons and the morphogenesis of pharyngeal gill slits, respectively. As the diffuse epidermal nerve net in the chordate ancestor became centralized to form the dorsal nerve cord, the epidermal Hox expression pattern was carried into the central nervous system. Because the Hox code here came to specify neuronal identity along the antero-posterior axis, RA became inextricably linked to the antero-posterior patterning of the chordate central nervous system. © 2006 Wiley Periodicals, Inc. J Neurobiol 66: 645,652, 2006 [source]


Methanol exposure interferes with morphological cell movements in the Drosophila embryo and causes increased apoptosis in the CNS

DEVELOPMENTAL NEUROBIOLOGY, Issue 3 2004
Dervla M. Mellerick
Abstract Despite the significant contributions of tissue culture and bacterial models to toxicology, whole animal models for developmental neurotoxins are limited in availability and ease of experimentation. Because Drosophila is a well understood model for embryonic development that is highly accessible, we asked whether it could be used to study methanol developmental neurotoxicity. In the presence of 4% methanol, approximately 35% of embryos die and methanol exposure leads to severe CNS defects in about half those embryos, where the longitudinal connectives are dorsally displaced and commissure formation is severely reduced. In addition, a range of morphological defects in other germ layers is seen, and cell movement is adversely affected by methanol exposure. Although we did not find any evidence to suggest that methanol exposure affects the capacity of neuroblasts to divide or induces inappropriate apoptosis in these cells, in the CNS of germ band retracted embryos, the number of apoptotic nuclei is significantly increased in methanol-exposed embryos in comparison to controls, particularly in and adjacent to the ventral midline. Apoptosis contributes significantly to methanol neurotoxicity because embryos lacking the cell death genes grim, hid, and reaper have milder CNS defects resulting from methanol exposure than wild-type embryos. Our data suggest that when neurons and glia are severely adversely affected by methanol exposure, the damaged cells are cleared by apoptosis, leading to embryonic death. Thus, the Drosophila embryo may prove useful in identifying and unraveling mechanistic aspects of developmental neurotoxicity, specifically in relation to methanol toxicity. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 308,318, 2004 [source]


Embryogenesis and metamorphosis in a haplosclerid demosponge: gastrulation and transdifferentiation of larval ciliated cells to choanocytes

INVERTEBRATE BIOLOGY, Issue 3 2002
Sally P. Leys
Abstract. Early development and metamorphosis of Reniera sp., a haplosclerid demosponge, have been examined to determine how gastrulation occurs in this species, and whether there is an inversion of the primary germ layers at metamorphosis. Embryogenesis occurs by unequal cleavage of blastomeres to form a solid blastula consisting micro- and macromeres; multipolar migration of the micromeres to the surface of the embryo results in a bi-layered embryo and is interpreted as gastrulation. Polarity of the embryo is determined by the movement of pigment-containing micromeres to one pole of the embryo; this pole later becomes the posterior pole of the swimming larva. The bi-layered larva has a fully differentiated monociliated outer cell layer, and a solid interior of various cell types surrounded by dense collagen. The pigmented cells at the posterior pole give rise to long cilia that are capable of responding to environmental stimuli. Larvae settle on their anterior pole. Fluorescent labeling of the monociliated outer cell layer with a cell-lineage marker (CMFDA) demonstrates that the monociliated cells resorb their cilia, migrate inwards, and transdifferentiate into the choanocytes of the juvenile sponge, and into other amoeboid cells. The development of the flagellated choanocytes and other cells in the juvenile from the monociliated outer layer of this sponge's larva is interpreted as the dedifferentiation of fully differentiated larval cells,a process seen during the metamorphosis of other ciliated invertebrate larvae,not as inversion of the primary germ layers. These results suggest that the sequences of development in this haplosclerid demosponge are not very different than those observed in many cnidarians. [source]


Taking stem cells to the clinic: Major challenges

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2008
Ariff Bongso
Abstract Stem cell therapy offers tremendous promise in the treatment of many incurable diseases. A variety of stem cell types are being studied but human embryonic stem cells (hESCs) appear to be the most versatile as they are pluripotent and can theoretically differentiate into all the tissues of the human body via the three primordial germ layers and the male and female germ lines. Currently, hESCs have been successfully converted in vitro into functional insulin secreting islets, cardiomyocytes, and neuronal cells and transfer of such cells into diabetic, ischaemic, and parkinsonian animal models respectively have shown successful engraftment. However, hESC-derived tissue application in the human is fraught with the problems of ethics, immunorejection, tumorigenesis from rogue undifferentiated hESCs, and inadequate cell numbers because of long population doubling times in hESCs. Human mesenchymal stem cells (hMSC) though not tumorigenic, also have their limitations of multipotency, immunorejection, and are currently confined to autologous transplantation with the genuine benefits in allogeneic settings not conclusively shown in large controlled human trials. Human Wharton's jelly stem cells (WJSC) from the umbilical cord matrix which are of epiblast origin and containing both hESC and hMSC markers appear to be less troublesome in not being an ethically controversial source, widely multipotent, not tumorigenic, maintain "stemness" for several serial passages and because of short population doubling time can be scaled up in large numbers. This report describes in detail the hurdles all these stem cell types have to overcome before stem cell-based therapy becomes a genuine reality. J. Cell. Biochem. 105: 1352,1360, 2008. © 2008 Wiley-Liss, Inc. [source]


Stable transgene expression in human embryonic stem cells after simple chemical transfection

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 6 2009
Jun Liu
In this study we used plasmid-based vectors to investigate the transcriptional activities of three commonly used promoters in transient and stable transfection of MEL-1, a human embryonic stem (ES) cell line, using ExGen500, Fugene HD, and Lipofectamine. We demonstrated that cytomegalovirus (CMV), phosphoglycerate kinase (PGK) and human elongation factor-1, (EF1,) promoters all resulted in robust activity of a reporter gene in MEL-1 ES cell transient transfections regardless of the transfection reagent. Stable transfection outcomes varied, depending on the promoter and the transfection reagent used in the study. The phenomenon of transgene silencing was observed, most notably with the CMV vector, with which no positive stably transfected clones were obtained. Of the methods used in the study, Fugene HD resulted in the highest stable transfection rate, estimated by antibiotic selection, with plasmids containing genes under the control of the EF1, or PGK promoters. Stably transfected cells maintained typical hES cell morphology, with immunostaining exhibiting expression of the hES cell markers: Oct4, SSEA4, Tra-1-60, and Tra-1-81. Further, embryoid bodies formed by suspension culture retained reporter gene expression. Following injection into immunodeficient mice, the transfected cell lines showed robust formation of teratomas with cell types representative of the three germ layers. Mol. Reprod. Dev. 76: 580,586, 2009. © 2008 Wiley-Liss, Inc. [source]


Characterization and multilineage differentiation of embryonic stem cells derived from a buffalo parthenogenetic embryo

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 10 2007
Hathaitip Sritanaudomchai
Abstract Embryonic stem (ES) cells derived from mammalian embryos have the ability to form any terminally differentiated cell of the body. We herein describe production of parthenogenetic buffalo (Bubalus Bubalis) blastocysts and subsequent isolation of an ES cell line. Established parthenogenetic ES (PGES) cells exhibited diploid karyotype and high telomerase activity. PGES cells showed remarkable long-term proliferative capacity providing the possibility for unlimited expansion in culture. Furthermore, these cells expressed key ES cell-specific markers defined for primate species including stage-specific embryonic antigen-4 (SSEA-4), tumor rejection antigen-1-81 (TRA-1-81), and octamer-binding transcription factor 4 (Oct-4). In vitro, in the absence of a feeder layer, cells readily formed embryoid bodies (EBs). When cultured for an extended period of time, EBs spontaneously differentiated into derivatives of three embryonic germ layers as detected by PCR for ectodermal (nestin, oligodendrocytes, and tubulin), mesodermal (scleraxis, ,- skeletal actin, collagen II, and osteocalcin) and endodermal markers (insulin and ,- fetoprotein). Differentiation of PGES cells toward chondrocyte lineage was directed by supplementing serum-containing media with ascorbic acid, ,-glycerophosphate, and dexamethasone. Moreover, when PGES cells were injected into nude mice, teratomas with derivatives representing all three embryonic germ layers were produced. Our results suggest that the cell line isolated from a parthenogenetic blastocyst holds properties of ES cells, and can be used as an in vitro model to study the effects of imprinting on cell differentiation and as an a invaluable material for extensive molecular studies on imprinted genes. Mol. Reprod. Dev. 74: 1295,1302, 2007. © 2007 Wiley-Liss, Inc. [source]


A live-born child with a mosaic chromosomal pattern of either monosomy 21 or trisomy 4 in different embryonal germ layers

PRENATAL DIAGNOSIS, Issue 1 2010
A. M. F. van der Kevie-Kersemaekers
No abstract is available for this article. [source]