Home About us Contact | |||
Generating Mechanism (generating + mechanism)
Selected AbstractsIncorporating variable source area hydrology into a curve-number-based watershed modelHYDROLOGICAL PROCESSES, Issue 25 2007Elliot M. Schneiderman Abstract Many water quality models use some form of the curve number (CN) equation developed by the Soil Conservation Service (SCS; U.S. Depart of Agriculture) to predict storm runoff from watersheds based on an infiltration-excess response to rainfall. However, in humid, well-vegetated areas with shallow soils, such as in the northeastern USA, the predominant runoff generating mechanism is saturation-excess on variable source areas (VSAs). We reconceptualized the SCS,CN equation for VSAs, and incorporated it into the General Watershed Loading Function (GWLF) model. The new version of GWLF, named the Variable Source Loading Function (VSLF) model, simulates the watershed runoff response to rainfall using the standard SCS,CN equation, but spatially distributes the runoff response according to a soil wetness index. We spatially validated VSLF runoff predictions and compared VSLF to GWLF for a subwatershed of the New York City Water Supply System. The spatial distribution of runoff from VSLF is more physically realistic than the estimates from GWLF. This has important consequences for water quality modeling, and for the use of models to evaluate and guide watershed management, because correctly predicting the coincidence of runoff generation and pollutant sources is critical to simulating non-point source (NPS) pollution transported by runoff. Copyright © 2007 John Wiley & Sons, Ltd. [source] Runoff generation from logged and burnt convergent hillslopes: rainfall simulation and modellingHYDROLOGICAL PROCESSES, Issue 5 2004Patrick N. J. Lane Abstract This paper reports results from field experiments and hydrological modelling on the dynamics of runoff generation in highly convergent parts of the landscape in a logged and burnt eucalypt forest in south-eastern Victoria, Australia. Large-scale rainfall simulation experiments were conducted to explore runoff generating mechanisms from harvested areas, and to assess the effectiveness of standard water quality protective measures, here a disturbed filter strip, in preventing accession of sediment to near-stream areas. We then examined the likely effects of varying antecedent moisture conditions on surface and subsurface runoff generating mechanisms. Very small volumes of surface runoff were generated only at very high rainfall intensity rates that exceeded a 100 year recurrence interval event during the simulated experiments. There was little or no identifiable impact of either compaction from logging operations or fire-induced hydrophobicity on surface infiltration or generation of surface runoff. Measured soil hydraulic properties and soil depths explained the paucity of surface runoff, and the dominance of subsurface storm flow as the prime runoff generating mechanism. Deep lateral subsurface flow was observed from the cut-face of a fire access track and into a streamhead downslope of the experimental plots. Water balance modelling using Topog_Dynamic indicated the conditions under which saturated overland flow in this environment could be generated are rare, but that care should be taken in siting of roads and tracks in lower parts of convergent landscapes. Copyright © 2004 John Wiley & Sons, Ltd. [source] Spurious Regression Under Broken-Trend StationarityJOURNAL OF TIME SERIES ANALYSIS, Issue 5 2006Antonio E. Noriega C22 Abstract., We study the phenomenon of spurious regression between two random variables, when the generating mechanism of individual series is assumed to follow a stationary process around a trend with (possibly) multiple breaks in the level and slope of trend. We develop the relevant asymptotic theory and show that the phenomenon of spurious regression occurs independent of the structure assumed for the errors. In contrast to previous findings, the presence of a spurious relationship will be less severe when breaks are present in the generating mechanism of individual series. This is true whether the regression model includes a linear trend or not. Simulations confirm our asymptotic results, and reveal that in finite samples, the phenomenon of spurious regression is sensitive to the presence of a linear trend in the regression model and to the relative location of breaks within the sample. [source] Range Unit-Root (RUR) Tests: Robust against Nonlinearities, Error Distributions, Structural Breaks and OutliersJOURNAL OF TIME SERIES ANALYSIS, Issue 4 2006Felipe Aparicio Abstract., Since the seminal paper by Dickey and Fuller in 1979, unit-root tests have conditioned the standard approaches to analysing time series with strong serial dependence in mean behaviour, the focus being placed on the detection of eventual unit roots in an autoregressive model fitted to the series. In this paper, we propose a completely different method to test for the type of long-wave patterns observed not only in unit-root time series but also in series following more complex data-generating mechanisms. To this end, our testing device analyses the unit-root persistence exhibited by the data while imposing very few constraints on the generating mechanism. We call our device the range unit-root (RUR) test since it is constructed from the running ranges of the series from which we derive its limit distribution. These nonparametric statistics endow the test with a number of desirable properties, the invariance to monotonic transformations of the series and the robustness to the presence of important parameter shifts. Moreover, the RUR test outperforms the power of standard unit-root tests on near-unit-root stationary time series; it is invariant with respect to the innovations distribution and asymptotically immune to noise. An extension of the RUR test, called the forward,backward range unit-root (FB-RUR) improves the check in the presence of additive outliers. Finally, we illustrate the performances of both range tests and their discrepancies with the Dickey,Fuller unit-root test on exchange rate series. [source] Experimental model for creep groan analysisLUBRICATION SCIENCE, Issue 1 2009Z. Fuadi Abstract A simple experimental model for a fundamental investigation of creep groan generating mechanism is introduced. It is a calliper slider model that is developed based on the operating principle of a real brake system and has the ability to generate creep groan quantitatively comparable to those recorded on the real brake system. The advantage of the model is that it is possible to take into account many parameters, such as surface roughness of mating materials, properties of mating materials and structure's stiffness, so that their effects for creep groan phenomenon can be analysed. The usefulness and potential of the model are demonstrated by its ability to generate creep groan using a real brake lining material that is well known to the brake industry as a material that easily produces creep groan in real applications. Parametric analysis is conducted, and the effects of several sensitive parameters to stick-slip frequency characteristic of creep groan are highlighted. Copyright © 2008 John Wiley & Sons, Ltd. [source] Landslide events on the West Coast, South Island, 1867,2002NEW ZEALAND GEOGRAPHER, Issue 1 2005J. L. Benn Abstract:, A new landslide event inventory based on a literature search has been compiled for the West Coast of New Zealand. Rainfall has been identified as the most frequent reported landslide generating mechanism by far, followed by other/unknown means, then earthquakes. Small-magnitude, high-frequency, rainfall-induced events have historically caused the most damage to property and infrastructure, with many of the region's highways and settlements being repeatedly affected by landslides. Since 1874, landslides have caused at least 36 fatalities in the region. More historical research is needed to fill chronological and geographical gaps in the record, and to complement scientific research. Such information is useful for hazard planning purposes. [source] Laws and Limits of Econometrics*THE ECONOMIC JOURNAL, Issue 486 2003Peter C. B. Phillips We discuss general weaknesses and limitations of the econometric approach. A template from sociology is used to formulate six laws that characterise mainstream activities of econometrics and their scientific limits. We discuss proximity theorems that quantify by explicit bounds how close we can get to the generating mechanism of the data and the optimal forecasts of next period observations using a finite number of observations. The magnitude of the bound depends on the characteristics of the model and trajectory of the data. We look at one possible future of econometrics using advanced econometric methods interactively with a web browser. [source] Comparing alternative models: log vs Cox proportional hazard?HEALTH ECONOMICS, Issue 8 2004Anirban Basu Abstract Health economists often use log models (based on OLS or generalized linear models) to deal with skewed outcomes such as those found in health expenditures and inpatient length of stay. Some recent studies have employed Cox proportional hazard regression as a less parametric alternative to OLS and GLM models, even when there was no need to correct for censoring. This study examines how well the alternative estimators behave econometrically in terms of bias when the data are skewed to the right. Specifically we provide evidence on the performance of the Cox model under a variety of data generating mechanisms and compare it to the estimators studied recently in Manning and Mullahy (2001). No single alternative is best under all of the conditions examined here. However, the gamma regression model with a log link seems to be more robust to alternative data generating mechanisms than either OLS on ln(y) or Cox proportional hazards regression. We find that the proportional hazard assumption is an essential requirement to obtain consistent estimate of the E(y,x) using the Cox model. Copyright © 2004 John Wiley & Sons, Ltd. [source] Runoff generation from logged and burnt convergent hillslopes: rainfall simulation and modellingHYDROLOGICAL PROCESSES, Issue 5 2004Patrick N. J. Lane Abstract This paper reports results from field experiments and hydrological modelling on the dynamics of runoff generation in highly convergent parts of the landscape in a logged and burnt eucalypt forest in south-eastern Victoria, Australia. Large-scale rainfall simulation experiments were conducted to explore runoff generating mechanisms from harvested areas, and to assess the effectiveness of standard water quality protective measures, here a disturbed filter strip, in preventing accession of sediment to near-stream areas. We then examined the likely effects of varying antecedent moisture conditions on surface and subsurface runoff generating mechanisms. Very small volumes of surface runoff were generated only at very high rainfall intensity rates that exceeded a 100 year recurrence interval event during the simulated experiments. There was little or no identifiable impact of either compaction from logging operations or fire-induced hydrophobicity on surface infiltration or generation of surface runoff. Measured soil hydraulic properties and soil depths explained the paucity of surface runoff, and the dominance of subsurface storm flow as the prime runoff generating mechanism. Deep lateral subsurface flow was observed from the cut-face of a fire access track and into a streamhead downslope of the experimental plots. Water balance modelling using Topog_Dynamic indicated the conditions under which saturated overland flow in this environment could be generated are rare, but that care should be taken in siting of roads and tracks in lower parts of convergent landscapes. Copyright © 2004 John Wiley & Sons, Ltd. [source] Investigating mechanisms of stormflow generation by natural tracers and hydrometric data: a small catchment study in the Black Forest, GermanyHYDROLOGICAL PROCESSES, Issue 2 2001E. Hangen Abstract The importance and interaction of various hydrological pathways and identification of runoff source areas involved in solute transport are still under considerable debate in catchment hydrology. To reveal stormflow generating areas and flow paths, hydrometric behaviour of throughfall, soil water from various depths, runoff, and respective concentrations of the environmental tracers 18O, Si, K, SO4 and dissolved organic carbon were monitored for a 14-week period in a steep headwater catchment in the Black Forest Mountains, Germany. Two stormflow hydrographs were selected and, based on 18O and Si, chemically separated into three flow components. Their sources were defined using mixing diagrams. Additional information about stormflow generating mechanisms was derived from recession analyses of the basin's complete 5-year hydrograph record. By providing insight into storage properties and residence times of outflowing reservoirs of the basin, recession analysis proved to be a valuable tool in runoff model conceptualization. Its results agreed well with hydrometric and hydrochemical data. Supported by evaluation of 30 hillslope soil profiles a coherent concept of stormflow generation could be derived: whereas in many steeply sloped basins in the temperate region soil water from hillslopes appears to have an immediate effect on the shape of the stormflow hydrograph, its role at this basin is basically restricted to the recharge of the groundwater reservoir in the near-channel area. Storm hydrograph peaks appear to be derived from a small direct runoff component supplemented by a fast delivery of baseflow from the groundwater reservoir in the valley bottom. Copyright © 2001 John Wiley & Sons, Ltd. [source] Numerical simulation of pulsations in the bora windTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 627 2007Danijel Belu Abstract Numerical simulation of a long bora episode is presented and compared with measurements. The goal is to resolve the quasi-periodic oscillations of the bora gusts, i.e. the pulsations. The model reproduced well the approximately 7 min periodicity of pulsations and the upstream structure of the atmosphere, and can thus be used for the detailed dynamical considerations. The results of previous studies are confirmed, as well as the hypotheses on the mechanisms responsible for the disappearance of pulsations. Specifically, it is shown that the upper-tropospheric jet induces strong positive shear throughout the troposphere and consequently the local nonlinearity of the incoming flow weakens. Henceforth, the low-level wave breaking is diminished and so the pulsations cease. From the three previously proposed generating mechanisms of pulsations, the results obtained point to the Kelvin,Helmholtz instability as the primary mechanism in this case. Additionally, it seems that the situations with absence of pulsations may be related to the formation of the mountain-wave-induced rotor. Copyright © 2007 Royal Meteorological Society [source] |