Gene Knockdown (gene + knockdown)

Distribution by Scientific Domains

Selected Abstracts

Gene Knockdown: A Powerful Tool for Gene Function Study in Fish

Surintorn Boonanuntanasarn
So far, there are a number of fish genome projects, including experimental and economically important fish that provide available DNA sequence information. However, the function of a gene cannot be deduced only by its DNA sequence. Therefore, a technique with which to investigate the function of the fish gene is needed. Gene knockdown (GKD), or antisense technology, is now being used as a powerful technique to study gene functions in living organisms. GKD effects result from the introduction of an antisense molecule into living cells. The antisense agents bind to target messenger RNA, thus inactivating the target gene expression. The appropriately spatial inhibitory effects on protein production from corresponding gene resulted in the phenotypic change. Therefore, the function of the gene can be understood. To date, there are a number of antisense molecules that can affect efficient GKD in fish. These include antisense oligonucleotides, small interfering RNA, and ribozyme. These antisense molecules cause specific gene inhibitor effects with different mechanisms. The various antisense mechanism types facilitate a number of GKD applications with various approaches in animals. In this review, we demonstrate the characteristics of each antisense molecule, its mechanism, and its application, especially for gene functional analysis in fish. [source]

Evidence for RPE65-independent vision in the cone-dominated zebrafish retina

Helia B. Schonthaler
Abstract An enzyme-based cyclic pathway for trans to cis isomerization of the chromophore of visual pigments (11- cis -retinal) is intrinsic to vertebrate cone and rod vision. This process, called the visual cycle, is mostly characterized in rod-dominated retinas and essentially depends on RPE65, an all- trans to 11- cis -retinoid isomerase. Here we analysed the role of RPE65 in zebrafish, a species with a cone-dominated retina. We cloned zebrafish RPE65 and showed that its expression coincided with photoreceptor development. Targeted gene knockdown of RPE65 resulted in morphologically altered rod outer segments and overall reduced 11- cis -retinal levels. Cone vision of RPE65-deficient larvae remained functional as demonstrated by behavioural tests and by metabolite profiling for retinoids. Furthermore, all- trans retinylamine, a potent inhibitor of the rod visual cycle, reduced 11- cis -retinal levels of control larvae to a similar extent but showed no additive effects in RPE65-deficient larvae. Thus, our study of zebrafish provides in vivo evidence for the existence of an RPE65-independent pathway for the regeneration of 11- cis -retinal for cone vision. [source]

Silencing dopamine D3 -receptors in the nucleus accumbens shell in vivo induces changes in cocaine-induced hyperlocomotion

Amine Bahi
Abstract The dopamine D3 receptor (D3R) is an important pharmacotherapeutic target for its potential role in psychiatric disorders and drug dependence. To further explore its function in rats, a regulatable lentivirus, Lenti-D3, holding the rat D3R cDNA, has been constructed as well as three nonregulatable lentiviruses, Lenti-D3-siRNA1, Lenti-D3-siRNA2 and Lenti-D3-siRNA3, expressing small hairpin RNAs, aimed at silencing D3R expression and specifically targeted against different regions of the D3R mRNA. In vitro, Lenti-D3 expressed D3R and could efficiently be blocked with Lenti-D3-Sils. These viruses were stereotaxically injected into the shell part of the nucleus accumbens (NAcc) and effects of passive cocaine delivery on locomotor activity were assessed. Manipulations of D3R levels induced changes in the locomotor stimulant effects of cocaine as compared to control treatment. Suppression of dopamine (DA) D3R in the NAcc by means of local knockdown (with Lenti-D3-Sils) increased locomotor stimulant effects, whereas its overexpression with Lenti-D3 drastically reduced them. The latter effects could be reversed when animals were fed doxycycline, which prevented lentiviral-mediated DA D3R overexpression in the NAcc. Gene expression assessed by quantitative RT-PCR confirmed very efficient gene knockdown in vivo in animals treated with Lenti-D3-Sils (> 93% silencing of D3R gene). Thus D3R expression significantly contributes to behavioural changes associated with chronic cocaine delivery. [source]

Differential erbB signaling in astrocytes from the cerebral cortex and the hypothalamus of the human brain

GLIA, Issue 4 2009
Ariane Sharif
Abstract Studies in rodents have shown that astroglial erbB tyrosine kinase receptors are key regulatory elements in neuron,glia communication. Although both astrocytes and deregulation of erbB functions have been implicated in the pathogenesis of many common human brain disorders, erbB signaling in native human brain astrocytes has never been explored. Taking advantage of our ability to perform primary cultures from the cortex and the hypothalamus of human fetuses, we conducted a thorough analysis of erbB signaling in human astrocytes. We showed that human cortical astrocytes express erbB1, erbB2, and erbB3, whereas human hypothalamic astrocytes express erbB1, erbB2, and erbB4 receptors. Ligand-dependent activation of different erbB receptor heterodimeric complexes in these two populations of astrocytes translated into different morphological and proliferative responses. Although morphological plasticity was more pronounced in hypothalamic astrocytes than in cortical astrocytes, the former showed a lower mitogenic potential. Decreasing erbB4 expression via siRNA-mediated gene knockdown revealed that erbB4 constitutively restrains basal proliferative activity in hypothalamic astrocytes. We further show that treatment of human astrocytes with a protein kinase C activator results in rapid tyrosine phosphorylation of erbB receptors that involves cleavage of endogenous membrane bound erbB ligands by metalloproteinases. Together, these results indicate that erbB signaling in primary human brain astrocytes is functional, region-specific, and can be activated in a paracrine and/or autocrine manner. In addition, by revealing that some aspects of astroglial erbB signaling are different between human and rodents, our results provide a molecular framework to explore the potential involvement of astroglial erbB signaling deregulation in human brain disorders. 2008 Wiley-Liss, Inc. [source]

Dextran Microgels for Time-Controlled Delivery of siRNA,

Koen Raemdonck
Abstract To apply siRNA as a therapeutic agent, appropriate attention should be paid to the optimization of the siRNA gene silencing effect, both in terms of magnitude and duration. Intracellular time-controlled siRNA delivery could aid in tailoring the kinetics of siRNA gene knockdown. However, materials with easily tunable siRNA release properties have not been subjected to thorough investigation thus far. This report describes cationic biodegradable dextran microgels which can be loaded with siRNA posterior to gel formation. Even though the siRNAs are incorporated in the hydrogel network based on electrostatic interaction, still a time-controlled release can be achieved by varying the initial network density of the microgels. To demonstrate the biological functionality of the siRNA loaded gels, we studied their cellular internalization and enhanced green fluorescent protein (EGFP) gene silencing potential in HUH7 human hepatoma cells. [source]

Prolonged gene knockdown in the tsetse fly Glossina by feeding double stranded RNA

D. P. Walshe
Abstract Reverse genetic studies based on RNA interference (RNAi) have revolutionized analysis of gene function in most insects. However the necessity of injecting double stranded RNA (dsRNA) inevitably compromises many investigations particularly those on immunity. Additionally, injection of tsetse flies often causes significant mortality. We demonstrate, at transcript and protein level, that delivering dsRNA in the bloodmeal to Glossina morsitans morsitans is as effective as injection in knockdown of the immunoresponsive midgut-expressed gene TsetseEP. However, feeding dsRNA fails to knockdown the fat body expressed transferrin gene, 2A192, previously shown to be silenced by dsRNA injection. Mortality rates of the dsRNA fed flies were significantly reduced compared to injected flies 14 days after treatment (Fed: 10.1% 1.8%; injected: 37.9% 3.6% (Mean SEM)). This is the first demonstration in Diptera of gene knockdown by feeding and the first example of knockdown in a blood-sucking insect by including dsRNA in the bloodmeal. [source]

Local matrix metalloproteinase 2 gene knockdown in balloon-injured rabbit carotid arteries using nonviral-small interfering RNA transfection

Hanna Hlawaty
Abstract Background Small interfering RNA (siRNA) delivery is a promising approach for the treatment of cardiovascular diseases. Matrix metalloproteinase (MMP) 2 over-expression in the arterial wall has been implicated in restenosis after percutaneous coronary intervention, as well as in spontaneous atherosclerotic plaque rupture. We hypothesized that in vivo local delivery of siRNA targeted at MMP2 (MMP2-siRNA) in the balloon-injured carotid artery of hypercholesterolemic rabbits may lead to inhibition of MMP2 expression. Methods Two weeks after balloon injury, 5 mol/l of Tamra-tagged MMP2-siRNA, scramble siRNA or saline was locally injected in the carotid artery and incubated for 1 h. Results Fluorescent microscopy studies showed the circumferential uptake of siRNA in the superficial layers of neointimal cells. MMP2 mRNA levels, measured by the real-time reverse transcriptase-polymerase chain reaction, was decreased by 79 25% in MMP2-siRNA- versus scramble siRNA-transfected arteries (p < 0.05). MMP2 activity, measured by gelatin zymography performed on the conditioned media of MMP2-siRNA versus scramble siRNA transfected arteries, decreased by 53 29%, 50 24% and 46 14% at 24, 48 and 72 h, respectively (p < 0.005 for all). No effect was observed on MMP9, pro-MMP9 and TIMP-2 levels. Conclusions The results obtained in the present study suggest that significant inhibition of gene expression can be achieved with local delivery of siRNA in the arterial wall in vivo. Copyright 2008 John Wiley & Sons, Ltd. [source]

Sequence-specific gene silencing in murine muscle induced by electroporation-mediated transfer of short interfering RNA

Tsunao Kishida
Abstract Background Post-genomic biomedical research requires efficient techniques for functional analyses of poorly characterized genes in living organisms. Sequence-specific gene silencing in mammalian organs may provide valuable information on the physiological and pathological roles of predicted genes in mammalian systems. Here, we attempted targeted gene knockdown in vivo in murine skeletal muscle through the electroporation-mediated transfer of short interfering RNA (siRNA). Methods siRNA duplexes corresponding to the firefly luciferase (Luc), green fluorescent protein (GFP), or glyceraldehyde-3-phosphate dehydrogenase (GAPD) genes were delivered by electroporation into the tibial muscle of normal or enhanced GFP (EGFP) transgenic mice. Plasmid vectors carrying the Luc, hRluc or ,-galactosidase (,-gal) reporter genes were also delivered. The Luc and hRluc activities in the muscle lysates were assayed. The EGFP and GAPD expression was detected by fluorescence microscopic observation and RT-PCR, respectively. Results When Luc-specific siRNA was co-delivered with the Luc expression vector into the tibial muscle, the reporter gene expression was markedly suppressed (less than 1% of the control level) for 5 days. As little as 0.05 g of siRNA almost completely blocked the reporter gene expression from 10 g of the plasmid. To examine whether siRNA can also suppress expression of an endogenous gene, transgenic mice carrying the EGFP gene received intramuscular transfection of a mixture of ,-gal plasmid and GFP-specific siRNA. ,-Gal-positive cells failed to express detectable levels of EGFP, while EGFP expression was not inhibited in control mice that received nonspecific siRNA. Expression of GAPD was also suppressed by the specific siRNA. Conclusions The present system may provide a useful means of phenotypic analysis of genetic information in mammalian organs for basic research as well as therapeutic molecular targeting in the post-genomic era. Copyright 2003 John Wiley & Sons, Ltd. [source]

A functional genomics approach to evaluate candidate genes located in a QTL interval for milk production traits on BTA6

P. A. Sheehy
Summary The potential genetic and economic advantage of marker-assisted selection for enhanced production in dairy cattle has provided an impetus to conduct numerous genome scans in order to identify associations between DNA markers and future productive potential. One area of focus has been a quantitative trait locus on bovine chromosome 6 (BTA6) found to be associated with milk yield, milk protein and fat percentage, which has been subsequently fine-mapped to six positional candidate genes. Subsequent investigations have yet to resolve which of the potential positional candidate genes is responsible for the observed associations with productive performance. In this study, we analysed candidate gene expression and the effects of gene knockdown on expression of ,- and ,-casein mRNA in a small interfering RNA transfected bovine in vitro mammosphere model. From our expression studies in vivo, we observed that four of the six candidates (ABCG2, SPP1, PKD2 and LAP3) exhibited differential expression in bovine mammary tissue over the lactation cycle, but in vitro functional studies indicate that inhibition of only one gene, SPP1, had a significant impact on milk protein gene expression. These data suggest that the gene product of SPP1 (also known as osteopontin) has a significant role in the modulation of milk protein gene expression. While these findings do not exclude other positional candidates from influencing lactation, they support the hypothesis that the gene product of SPP1 is a significant lactational regulatory molecule. [source]

Comparison of bovine RNA polymerase III promoters for short hairpin RNA expression

L. S. Lambeth
Summary RNA interference (RNAi) mediated by DNA-based expression of short hairpin RNA (shRNA) is a powerful method of sequence-specific gene knockdown. A number of vectors for expression of shRNA have been developed that feature promoters from RNA polymerase III (pol III)-transcribed genes of mouse or human origin. To advance the use of RNAi as a tool for functional genomic research and for future development of specific therapeutics in the bovine species, we have developed shRNA expression vectors that feature novel bovine RNA pol III promoters. We characterized two bovine U6 small nuclear RNA (snRNA) promoters (bU6-2 and bU6-3) and a bovine 7SK snRNA promoter (b7SK). We compared the efficiency of each of these promoters to express shRNA molecules. Promoter activity was measured in the context of RNAi by targeting and suppressing the reporter gene encoding enhanced green fluorescent protein. Results show that the b7SK promoter induced the greatest level of suppression in a range of cell lines. The comparison of these bovine promoters in shRNA expression is an important component for the future development of bovine-specific RNAi-based research. [source]

Differential expression of ,B-crystallin and evidence of its role as a mediator of matrix gene expression in osteoarthritis

Stijn Lambrecht
Objective Alpha B,crystallin belongs to the family of small heat-shock proteins (HSPs). The role of this protein family in chondrocytes is not well understood. The present study was undertaken to investigate expression levels of ,B-crystallin in chondrocytes isolated from healthy subjects and patients with osteoarthritis (OA), and to explore the functional role of this potentially interesting protein in chondrocyte metabolism. Methods Western blot and real-time reverse transcriptase,polymerase chain reaction (RT-PCR) analyses were performed to determine expression levels of ,B-crystallin in healthy and OA chondrocytes cultured in alginate beads. RNA interference,mediated gene knockdown was used to explore the role of this small HSP in chondrocyte biology, by transfecting low concentrations of small interfering RNA (siRNA) in cultured chondrocytes. Results We initially identified ,B-crystallin as a small HSP that was differentially expressed between healthy and OA-affected chondrocytes. The decreased abundance of this protein in OA chondrocytes was confirmed by Western blotting. Moreover, real-time RT-PCR confirmed the differential expression between chondrocytes isolated from visibly intact and visibly damaged zones of OA cartilage. The proinflammatory cytokines interleukin-1, and tumor necrosis factor , both down-regulated ,B-crystallin expression. Transfection of low concentrations of siRNA in cultured chondrocytes resulted in efficient knockdown of ,B-crystallin gene expression. This was accompanied by altered expression of the chondrocyte-specific bone morphogenetic protein 2, aggrecan, and type II collagen genes. Conclusion The present findings identify the small HSP ,B-crystallin as a novel mediator of chondrocyte matrix gene expression that may contribute to altered chondrocyte metabolism during the development of OA. [source]

Gene Therapy in HIV-Infected Cells to Decrease Viral Impact by Using an Alternative Delivery Method

CHEMMEDCHEM, Issue 6 2010
Teresa Gonzalo Dr.
Abstract The ability of dendrimer 2G-[Si{O(CH2)2N(Me)2+(CH2)2NMe3+(I,)2}]8 (NN16) to transfect a wide range of cell types, as well as the possible biomedical application in direct or indirect inhibition of HIV replication, was investigated. Cells implicated in HIV infection such as primary peripheral blood mononuclear cells (PBMC) and immortalized suspension cells (lymphocytes), primary macrophages and dendritic cells, and immortalized adherent cells (astrocytes and trophoblasts) were analyzed. Dendrimer toxicity was evaluated by mitochondrial activity, cell membrane rupture, release of lactate dehydrogenase, erythrocyte hemolysis, and the effect on global gene expression profiles using whole-genome human microarrays. Cellular uptake of genetic material was determined using flow cytometry and confocal microscopy. Transfection efficiency and gene knockdown was investigated using dendrimer-delivered antisense oligonucleotides and small interfering RNA (siRNA). Very little cytotoxicity was detected in a variety of cells relevant to HIV infection and erythrocytes after NN16 dendrimer treatment. Imaging of cellular uptake showed high transfection efficiency of genetic material in all cells tested. Interestingly, NN16 further enhanced the reduction of HIV protein 24 antigen release by antisense oligonucleotides due to improved transfection efficiency. Finally, the dendrimer complexed with siRNA exhibited therapeutic potential by specifically inhibiting cyclooxygenase-2 gene expression in HIV-infected nervous system cells. NN16 dendrimers demonstrated the ability to transfect genetic material into a vast array of cells relevant to HIV pathology, combining high efficacy with low toxicity. These results suggest that NN16 dendrimers have the potential to be used as a versatile non-viral vector for gene therapy against HIV infection. [source]