Genotypic Variance (genotypic + variance)

Distribution by Scientific Domains


Selected Abstracts


Variability and divergence in Pongamia pinnata (L.) Pierre germplasm , a candidate tree for biodiesel

GCB BIOENERGY, Issue 6 2009
N. SUNIL
Abstract Three explorations were undertaken in South East Coastal zone of India covering parts of Andhra Pradesh (AP) and Orissa states to collect Pongamia pinnata (L.) Pierre germplasm during March,June 2007. A total of 123 accessions were collected and seed data recorded were analyzed for morphometric traits viz., seed length, seed width, seed thickness, 100-seed weight and oil content. Variation in the collected germplasm was analyzed using anova, simple measures of variation and D2 statistics. Significant genetic variability between seed traits and oil content and association among the seed traits was recorded. Phenotypic variance was higher than genotypic variance for all the characters indicating dominant role of environment. High heritability (broad sense) for 100-seed weight (97.6%) and oil content (86.7%) indicated the reliability of these characters as selection criteria for plus trees. Genetic gain was maximum for 100-seed weight (62.6%) followed by oil content (30.5%). D2 analysis grouped the accessions into 12 clusters. Cluster XII and cluster IX were the most diverse based on the intercluster distance. Based on the observed diversity, Chittoor, Srikakulam and Adilabad districts of AP are most suitable for collecting diverse germplasm lines and also for in situ conservation. [source]


Migration load in plants: role of pollen and seed dispersal in heterogeneous landscapes

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2008
S. LOPEZ
Abstract Evolution of local adaptation depends critically on the level of gene flow, which, in plants, can be due to either pollen or seed dispersal. Using analytical predictions and individual-centred simulations, we investigate the specific influence of seed and pollen dispersal on local adaptation in plant populations growing in patchy heterogeneous landscapes. We study the evolution of a polygenic trait subject to stabilizing selection within populations, but divergent selection between populations. Deviations from linkage equilibrium and Hardy,Weinberg equilibrium make different contributions to genotypic variance depending on the dispersal mode. Local genotypic variance, differentiation between populations and genetic load vary with the rate of gene flow but are similar for seed and pollen dispersal, unless the landscape is very heterogeneous. In this case, genetic load is higher in the case of pollen dispersal, which appears to be due to differences in the distribution of genotypic values before selection. [source]


Effect of the Rht-D1 dwarfing locus on Fusarium head blight rating in three segregating populations of winter wheat

PLANT BREEDING, Issue 4 2008
H.-H. Voss
Abstract Fusarium head blight (FHB) is one of the major fungal diseases in wheat throughout the world. To control FHB severity, breeding genetically resistant varieties is thought to be the most promising strategy. In wheat breeding programmes, short cultivars predominantly carrying the Norin 10 derived semi-dwarfing allele Rht-D1b (Rht2) are preferred worldwide because of higher achievable grain yields and lower risk of lodging. This study was conducted to determine the influence of different alleles at the Rht-D1 locus on FHB reaction. Three winter wheat populations were produced by crossing rather susceptible varieties ,Biscay', ,Pirat' and ,Rubens' carrying mutant-type allele Rht-D1b with the more resistant varieties ,Apache', ,Romanus' and ,History' containing the Rht-D1a wild-type allele (rht2). The 190, 216 and 103 progeny of the F4 -derived populations were assayed for the presence of Rht-D1a or Rht-D1b, plant height, and mean FHB rating after spray inoculation at flowering time with a highly aggressive isolate of Fusarium culmorum. Comparably, high mean FHB severities ranging from 28% to 49% for all population × environment combinations were achieved, with significant genotypic variation for FHB rating and plant height within all populations. Both traits were negatively correlated with r ranging from ,0.48 to ,0.61 in the complete populations. However, within the subpopulations homozygous for one or other height allele these correlations decreased considerably. The Rht-D1b semi-dwarfing allele resulted in 7,18% shorter plants, depending on the population, but a considerably increased FHB reaction of 22,53%. Nevertheless, significant genotypic variance for FHB resistance remained in all tested Rht-D1b subpopulations indicating that selection for moderately FHB resistant genotypes within agronomically beneficial Rht-D1b genotypes is still feasible. [source]