Geometric Morphometric Methods (geometric + morphometric_methods)

Distribution by Scientific Domains


Selected Abstracts


Geographical and taxonomic influences on cranial variation in red colobus monkeys (Primates, Colobinae): introducing a new approach to ,morph' monkeys

GLOBAL ECOLOGY, Issue 2 2009
Andrea Cardini
ABSTRACT Aim, To provide accurate but parsimonious quantitative descriptions of clines in cranial form of red colobus, to partition morphological variance into geographical, taxonomic and structured taxonomic components, and to visually summarize clines in multivariate shape data using a method which produces results directly comparable to both univariate studies of geographical variation and standard geometric morphometric visualization of shape differences along vectors. Location, Equatorial Africa. Methods, Sixty-four three-dimensional cranial landmarks were measured on 276 adult red colobus monkeys sampled over their entire distribution. Geometric morphometric methods were applied, and size and shape variables regressed onto geographical coordinates using linear and curvilinear models. Model selection was done using the second-order Akaike information criterion. Components of variation related to geography, taxon or their combined effect were partitioned using partial regresssion. Multivariate trends in clinal shape were summarized using principal components of predictions from regressions, plotting vector scores on maps as for univariate size, and visualizing differences along main axes of clinal shape variation using surface rendering. Results, Significant clinal variation was found in size and shape. Clines were similar in females and males. Trend surface analysis tended to be more accurate and parsimonious than alternative models in predicting morphology based on geography. Cranial form was relatively paedomorphic in East Africa and peramorphic in central Africa. Most taxonomic variation was geographically structured. However, taxonomic differences alone accounted for a larger proportion of total explained variance in shape (up to 40%) than in size (, 20%). Main conclusions, A strong cline explained most of the observed size variation and a significant part of the shape differences of red colobus crania. The pattern of geographical variation was largely similar to that previously reported in vervets, despite different habitat preferences (arboreal versus terrestrial) and a long period since divergence (c. 14,15 Myr). This suggests that some aspects of morphological divergence in both groups may have been influenced by similar environmental, geographical and historical factors. Cranial size is likely to be evolutionarily more labile and thus better reflects the influence of recent environmental changes. Cranial shape could be more resilient to change and thus better reflects phylogenetically informative differences. [source]


Ontogeny of robusticity of craniofacial traits in modern humans: A study of South American populations

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 3 2010
Paula N. Gonzalez
Abstract To date, differences in craniofacial robusticity among modern and fossil humans have been primarily addressed by analyzing adult individuals; thus, the developmental basis of such differentiation remains poorly understood. This article aims to analyze the ontogenetic development of craniofacial robusticity in human populations from South America. Geometric morphometric methods were used to describe cranial traits in lateral view by using landmarks and semilandmarks. We compare the patterns of variation among populations obtained with subadults and adults to determine whether population-specific differences are evident at early postnatal ontogeny, compare ontogenetic allometric trajectories to ascertain whether changes in the ontogeny of shape contribute to the differentiation of adult morphologies, and estimate the amount of size change that occurs during growth along each population-specific trajectory. The results obtained indicate that the pattern of interpopulation variation in shape and size is already established at the age of 5 years, meaning that processes acting early during ontogeny contribute to the adult variation. The ontogenetic allometric trajectories are not parallel among all samples, suggesting the divergence in the size-related shape changes. Finally, the extension of ontogenetic trajectories also seems to contribute to shape variation observed among adults. Am J Phys Anthropol 2010. © 2009 Wiley-Liss, Inc. [source]


The influence of masticatory loading on craniofacial morphology: A test case across technological transitions in the Ohio valley

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2010
Carolina Paschetta
Abstract Masticatory loading is one of the main environmental stimuli that generate craniofacial variation among recent humans. Experimental studies on a wide variety of mammals, including those with retrognathic postcanine teeth, predict that responses to masticatory loading will be greater in the occlusal plane, the inferior rostrum, and regions associated with the attachments of the temporalis and masseter muscles. Here we test these experimentally-derived predictions on an extinct human population from the middle and upper Ohio valley that underwent a marked shift from hunting-gathering to extensive farming during the last 3,000 years and for which we have good archaeological evidence about diet and food processing technology. Geometric morphometric methods were used to detect and measure the putative effect of diet changes on cranial shape independent of size. Our results partially confirm only some of the experimental predictions. The effect of softer and/or less tough diets on craniofacial shape seem to be concentrated in the relative reduction of the temporal fossa and in a displacement of the attachment of the temporal muscle. However, there were few differences in craniofacial shape in regions closer to the occlusal plane. These results highlight the utility of exploring specific localized morphological shifts using a hierarchical model of craniofacial integration. Am J Phys Anthropol, 2010. © 2009 Wiley-Liss, Inc. [source]


The pattern of endocranial ontogenetic shape changes in humans

JOURNAL OF ANATOMY, Issue 3 2009
Simon Neubauer
Abstract Humans show a unique pattern of brain growth that differentiates us from all other primates. In this study, we use virtual endocasts to provide a detailed description of shape changes during human postnatal ontogeny with geometric morphometric methods. Using CT scans of 108 dried human crania ranging in age from newborns to adults and several hundred landmarks and semi-landmarks, we find that the endocranial ontogenetic trajectory is curvilinear with two bends, separating three distinct phases of shape change. We test to what extent endocranial shape change is driven by size increase and whether the curved ontogenetic trajectory can be explained by a simple model of modular development of the endocranial base and the endocranial vault. The hypothesis that endocranial shape change is driven exclusively by brain growth is not supported; we find changes in endocranial shape after adult size has been attained and that the transition from high rates to low rates of size increase does not correspond to one of the shape trajectory bends. The ontogenetic trajectory of the endocranial vault analyzed separately is nearly linear; the trajectory of the endocranial base, in contrast, is curved. The endocranial vault therefore acts as one developmental module during human postnatal ontogeny. Our data suggest that the cranial base comprises several submodules that follow their own temporally and/or spatially disjunct growth trajectories. [source]


A geometric morphometric study of regional differences in the ontogeny of the modern human facial skeleton,

JOURNAL OF ANATOMY, Issue 3 2002
Una Strand Viðarsdóttir
Abstract This study examines interpopulation variations in the facial skeleton of 10 modern human populations and places these in an ontogenetic perspective. It aims to establish the extent to which the distinctive features of adult representatives of these populations are present in the early post natal period and to what extent population differences in ontogenetic scaling and allometric trajectories contribute to distinct facial forms. The analyses utilize configurations of facial landmarks and are carried out using geometric morphometric methods. The results of this study show that modern human populations can be distinguished based on facial shape alone, irrespective of age or sex, indicating the early presence of differences. Additionally, some populations have statistically distinct facial ontogenetic trajectories that lead to the development of further differences later in ontogeny. We conclude that population-specific facial morphologies develop principally through distinctions in facial shape probably already present at birth and further accentuated and modified to variable degrees during growth. These findings raise interesting questions regarding the plasticity of facial growth patterns in modern humans. Further, they have important implications in relation to the study of growth in the face of fossil hominins and in relation to the possibility of developing effective discriminant functions for the identification of population affinities of immature facial skeletal material. Such tools would be of value in archaeological, forensic and anthropological applications. The findings of this study underline the need to examine more deeply, and in more detail, the ontogenetic basis of other causes of craniometric variation, such as sexual dimorphism and hominin species differentiation. [source]


Morphometric Criteria for Sexing Juvenile Human Skeletons Using the Ilium

JOURNAL OF FORENSIC SCIENCES, Issue 2 2008
Laura A. Wilson B.Sc.
Abstract:, Previous attempts to sex juvenile skeletons have focused on the application of qualitative or semi-quantitative techniques. This study applies a variety of geometric morphometric methods, including eigenshape analysis, to this problem. Six metric criteria for the ilia were tested with the aim of investigating previous ideas concerning sexually diagnostic characters. This study uses 25 ilia from juveniles of known age and sex from Christ Church, Spitalfields, London. Ninety-six percent of juvenile ilia were correctly identified as male or female using the shape of the greater sciatic notch. Identification accuracy is shown to improve with age for several criteria. Males were identified to a higher accuracy than females. Application of geometric techniques improves the understanding of the relationship between age, sex, and shape and the clarity with which these relationships can be quantified. Archaeological and forensic relevance of the results are discussed with recommendations for future application. [source]


Chondrocranial development in larval Rana sylvatica (Anura: Ranidae): Morphometric analysis of cranial allometry and ontogenetic shape change

JOURNAL OF MORPHOLOGY, Issue 2 2002
Peter M. Larson
Abstract This study provides baseline quantitative data on the morphological development of the chondrocranium in a larval anuran. Both linear and geometric morphometric methods are used to quantitatively analyze size-related shape change in a complete developmental series of larvae of the wood frog, Rana sylvatica. The null hypothesis of isometry was rejected in all geometric morphometric and most linear morphometric analyses. Reduced major axis regressions of 11 linear chondrocranial measurements on size indicate a mixture of allometric and isometric scaling. Measurements in the otic and oral regions tend to scale with negative allometry and those associated with the palatoquadrate and muscular process scale with isometry or positive allometry. Geometric morphometric analyses, based on a set of 11 chondrocranial landmarks, include linear regression of relative warp scores and multivariate regression of partial warp scores and uniform components on log centroid size. Body size explains about one-quarter to one-third of the total shape variation found in the sample. Areas of regional shape transformation (e.g., palatoquadrate, otic region, trabecular horns) are identified by thin-plate spline deformation grids and are concordant with linear morphometric results. Thus, the anuran chondrocranium is not a static structure during premetamorphic stages and allometric patterns generally follow scaling predictions for tetrapod cranial development. Potential implications regarding larval functional morphology, cranial development, and chondrocranial evolution in anurans are discussed. J. Morphol. 252:131,144, 2002. © 2002 Wiley-Liss, Inc. [source]


The promise of geometric morphometrics

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue S35 2002
Joan T. Richtsmeier
Abstract Nontraditional or geometric morphometric methods have found wide application in the biological sciences, especially in anthropology, a field with a strong history of measurement of biological form. Controversy has arisen over which method is the "best" for quantifying the morphological difference between forms and for making proper statistical statements about the detected differences. This paper explains that many of these arguments are superfluous to the real issues that need to be understood by those wishing to apply morphometric methods to biological data. Validity, the ability of a method to find the correct answer, is rarely discussed and often ignored. We explain why demonstration of validity is a necessary step in the evaluation of methods used in morphometrics. Focusing specifically on landmark data, we discuss the concepts of size and shape, and reiterate that since no unique definition of size exists, shape can only be recognized with reference to a chosen surrogate for size. We explain why only a limited class of information related to the morphology of an object can be known when landmark data are used. This observation has genuine consequences, as certain morphometric methods are based on models that require specific assumptions, some of which exceed what can be known from landmark data. We show that orientation of an object with reference to other objects in a sample can never be known, because this information is not included in landmark data. Consequently, a descriptor of form difference that contains information on orientation is flawed because that information does not arise from evidence within the data, but instead is a product of a chosen orientation scheme. To illustrate these points, we apply superimposition, deformation, and linear distance-based morphometric methods to the analysis of a simulated data set for which the true differences are known. This analysis demonstrates the relative efficacy of various methods to reveal the true difference between forms. Our discussion is intended to be fair, but it will be obvious to the reader that we favor a particular approach. Our bias comes from the realization that morphometric methods should operate with a definition of form and form difference consistent with the limited class of information that can be known from landmark data. Answers based on information that can be known from the data are of more use to biological inquiry than those based on unjustifiable assumptions. Yrbk Phys Anthropol 45:63,91, 2002. © 2002 Wiley-Liss, Inc. [source]


Effects of Temperature Regime Through Premetamorphic Ontogeny on Shape of the Chondrocranium in the American Toad, Anaxyrus americanus

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 7 2008
Michael E. Jorgensen
Abstract If one considers the substantial amount of information that exists about phenotypic plasticity in amphibians, it is surprising that few studies have examined abiotic factors that influence phenotype through ontogeny. Phenotypic change and stability of morphology are artifacts of organisms that bear significant relevance to evolution within and among taxonomic groups. Here, we examine development as a phenotypically plastic aspect of larval anurans. Fertilized eggs of the American Toad, Anaxyrus (= Bufo) americanus (Holbrook, 1836), were obtained from two pairs of adults, and larvae were reared in four temperature treatments (constant Mean, constant High, constant Low, and Fluctuating regime [Low night,High day]); developmental series were collected from each treatment, representing larvae of this species from Gosner Stages 28,40. Cleared and stained larvae were analyzed with landmark-based geometric morphometric methods to facilitate examination of differences in overall shape change of the larval chondrocranium through ontogeny, as a result of developmental temperature or temperature regime. Changes in shape of the chondrocranium and in amount and direction of phenotypic change through ontogeny were found in response to temperature treatment and temperature regime. Mean chondrocranial shape of the Fluctuating regime was more similar to the consensus shape of the overall data set than were those of all other treatments. Given that differences in amount and direction of shape change were observed among these treatments and throughout ontogeny, one should consider the affects of abiotic factors (such as temperature) when rearing larval anurans for studies of developmental morphology. Anat Rec, 291:818-826, 2008. © 2008 Wiley-Liss, Inc. [source]


Historical and ecological correlates of body shape in the brook stickleback, Culaea inconstans

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2009
JESSICA LYN WARD
Using geometric morphometric methods, we evaluated the correlation between phenotypic variation and available historical and habitat information for two genetically differentiated, allopatric lineages of a widespread North American species, the brook stickleback (Culaea inconstans). The results obtained revealed strong patterns of structured phenotypic differentiation across the species range with extreme phenotypes occurring at the northwest and southeast range boundaries. Shape variation was broadly congruent with the distribution of two mitochondrial DNA lineages; a deep-bodied eastern form (Atlantic refugium) and a slim-bodied western form (Mississippian refugium); however, the two forms were not lineage-specific and phenotypic cladistic diversification is likely to be an artefact of underlying clinal variation associated with longitudinal and latitudinal gradients. In addition, we found little evidence of diagnosable lake and river forms across North America. Taken together, large-scale patterns of phenotypic diversity observed in C. inconstans suggest that relatively recent factors, such as continually varying natural selection across the range and/or potential local gene flow, may substantially mitigate the effects of historical separation or a generalized adaptive response to alternative habitats. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 96, 769,783. [source]


Human cranial anatomy and the differential preservation of population history and climate signatures

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 12 2006
Katerina Harvati
Abstract Cranial morphology is widely used to reconstruct evolutionary relationships, but its reliability in reflecting phylogeny and population history has been questioned. Some cranial regions, particularly the face and neurocranium, are believed to be influenced by the environment and prone to convergence. Others, such as the temporal bone, are thought to reflect more accurately phylogenetic relationships. Direct testing of these hypotheses was not possible until the advent of large genetic data sets. The few relevant studies in human populations have had intriguing but possibly conflicting results, probably partly due to methodological differences and to the small numbers of populations used. Here we use three-dimensional (3D) geometric morphometrics methods to test explicitly the ability of cranial shape, size, and relative position/orientation of cranial regions to track population history and climate. Morphological distances among 13 recent human populations were calculated from four 3D landmark data sets, respectively reflecting facial, neurocranial, and temporal bone shape; shape and relative position; overall cranial shape; and centroid sizes. These distances were compared to neutral genetic and climatic distances among the same, or closely matched, populations. Results indicate that neurocranial and temporal bone shape track neutral genetic distances, while facial shape reflects climate; centroid size shows a weak association with climatic variables; and relative position/orientation of cranial regions does not appear correlated with any of these factors. Because different cranial regions preserve population history and climate signatures differentially, caution is suggested when using cranial anatomy for phylogenetic reconstruction. Anat Rec Part A, 2006. © 2006 Wiley-Liss, Inc. [source]


Inferring adaptation within shape diversity of the humerus of subterranean rodent Ctenomys

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2010
FRANCISCO STEINER-SOUZA
In subterranean rodents of the genus Ctenomys, excavation activity can be carried out with the claws and forelimbs (scratch-digging) as well as with the skull and incisor teeth (skull-tooth digging). Within the forelimb myoskeletal system, the humerus is a main bone concentrating a large number of muscles and bearing tensions during excavation. The genus Ctenomys is considered primarily a scratch-digger and secondarily a skull-tooth digger. We analysed the humerus (N = 165) of four species of Ctenomys from southern Brazil, in areas ranging from the soft soils of the first lines of coastal dunes (Ctenomys flamarioni, Ctenomys minutus), through the sandy fields of the coastal plains (Ctenomys minutus, Ctenomys lami), on to the hard soils of the southern pampas ,gaúchos' fields (Ctenomys torquatus). The differences in the form (size + shape) were quantified using geometric morphometrics methods and interpreted in the light of myological descriptions. As expected from a phylogenetic and ecological point of view, C. flamarioni had the most divergent shape and larger size among the species analysed, showing a more slender humerus, especially in the head region, than C. lami, C. minutus, and C. torquatus. Crossing the osteology data with the qualitative observations of the musculature, it was possible to detect large differences in the proximal portion of the humerus that could be related to the insertion of important extension muscles of the pectoral,shoulder joints, which could increase force. The comparison of shape differences between the three closely-related species (C. lami, C. minutus, and C. torquatus) revealed unexpected patterns because C. lami was the species phenetically more distant from C. flamarioni and not C. torquatus as expected from ecological data and phylogenetic relationships. A two-step adaptive path to humeral shapes better fit to digging is postulated where the deltoid crest and epicondylar crest increases precede an articular surface area increase. The absence of sexual dimorphism in C. torquatus is discussed with regard to the optimal size required to dig in hard soils. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 353,367. [source]