Home About us Contact | |||
Geometric Morphometric Analysis (geometric + morphometric_analysis)
Selected AbstractsSexual Dimorphism in America: Geometric Morphometric Analysis of the Craniofacial Region,JOURNAL OF FORENSIC SCIENCES, Issue 1 2008Erin H. Kimmerle Ph.D. Abstract:, One of the four pillars of the anthropological protocol is the estimation of sex. The protocol generally consists of linear metric analysis or visually assessing individual skeletal traits on the skull and pelvis based on an ordinal scale of 1,5, ranging from very masculine to very feminine. The morphologic traits are then some how averaged by the investigator to estimate sex. Some skulls may be misclassified because of apparent morphologic features that appear more or less robust due to size differences among individuals. The question of misclassification may be further exemplified in light of comparisons across populations that may differ not only in cranial robusticity but also in stature and general physique. The purpose of this study is to further examine the effect of size and sex on craniofacial shape among American populations to better understand the allometric foundation of skeletal traits currently used for sex estimation. Three-dimensional coordinates of 16 standard craniofacial landmarks were collected using a Microscribe-3DX digitizer. Data were collected for 118 American White and Black males and females from the W.M. Bass Donated Collection and the Forensic Data Bank. The MANCOVA procedure tested shape differences as a function of sex and size. Sex had a significant influence on shape for both American Whites (F = 2.90; d.f. = 19, 39; p > F = 0.0024) and Blacks (F = 2.81; d.f. = 19, 37; p > F = 0.0035), whereas size did not have a significant influence on shape in either Whites (F = 1.69; d.f. = 19, 39; p > F = 0.08) or Blacks (F = 1.09; d.f. = 19, 37; p > F = 0.40). Therefore, for each sex, individuals of various sizes were statistically the same shape. In other words, while significant differences were present between the size of males and females (males on average were larger), there was no size effect beyond that accounted for by sex differences in size. Moreover, the consistency between American groups is interesting as it suggests that population differences in sexual dimorphism may result more from human variation in size than allometric variation in craniofacial morphology. [source] Chondrocranial development in larval Rana sylvatica (Anura: Ranidae): Morphometric analysis of cranial allometry and ontogenetic shape changeJOURNAL OF MORPHOLOGY, Issue 2 2002Peter M. Larson Abstract This study provides baseline quantitative data on the morphological development of the chondrocranium in a larval anuran. Both linear and geometric morphometric methods are used to quantitatively analyze size-related shape change in a complete developmental series of larvae of the wood frog, Rana sylvatica. The null hypothesis of isometry was rejected in all geometric morphometric and most linear morphometric analyses. Reduced major axis regressions of 11 linear chondrocranial measurements on size indicate a mixture of allometric and isometric scaling. Measurements in the otic and oral regions tend to scale with negative allometry and those associated with the palatoquadrate and muscular process scale with isometry or positive allometry. Geometric morphometric analyses, based on a set of 11 chondrocranial landmarks, include linear regression of relative warp scores and multivariate regression of partial warp scores and uniform components on log centroid size. Body size explains about one-quarter to one-third of the total shape variation found in the sample. Areas of regional shape transformation (e.g., palatoquadrate, otic region, trabecular horns) are identified by thin-plate spline deformation grids and are concordant with linear morphometric results. Thus, the anuran chondrocranium is not a static structure during premetamorphic stages and allometric patterns generally follow scaling predictions for tetrapod cranial development. Potential implications regarding larval functional morphology, cranial development, and chondrocranial evolution in anurans are discussed. J. Morphol. 252:131,144, 2002. © 2002 Wiley-Liss, Inc. [source] GEOMETRIC MORPHOMETRICS OF THE SKULL ROOF OF STEREOSPONDYLS (AMPHIBIA: TEMNOSPONDYLI)PALAEONTOLOGY, Issue 2 2006C. TRISTAN STAYTON Abstract:, Geometric morphometric analysis using relative warps is applied to the skull roof of 62 species of stereospondyls and their closest outgroups (i.e. basal archegosauriforms) from among temnospondyl amphibians. Twenty-one landmarks and five taxonomic groups are used for comparisons. Their skull evolution is quantified in a morphospace defined by two relative warps axes. The majority of groups show poor concordance between morphological and phylogenetic distances. The only exception is represented by Yates and Warren's study of stereospondyl relationships, in which concordance is high. Only basal archegosauriforms and rhinesuchids show significant overlap in morphospace, although this might be due to low sample sizes. Regression of estimated mean disparity against taxon sample size shows that species within both the trematosauroid and the rhytidostean groups are more widely dispersed in morphospace than species belonging to any of the remaining stereospondyl groups. Stereospondyl skull evolution was characterized by divergence between major clades and convergence within those clades. Changes in patterns of morphospace occupation through time agree with the hypothesis of an ,explosive' radiation in the early Early Triassic, after the extinction of basal archegosauriforms at the end of the Permian. [source] Ontogeny of the shi drum Umbrina cirrosa (Linnaeus 1758), a candidate new species for aquacultureAQUACULTURE RESEARCH, Issue 13 2005Giorgos Koumoundouros Abstract The ontogeny of shi drum Umbrina cirrosa (Linnaeus 1758), a candidate new species for aquaculture, was studied throughout the entire larval phase. Geometric morphometric analysis revealed two clear inflection points (7.0 and 12.7 mm total length, TL) in the shape ontogeny of this species, separating the studied period into three phases of different allometric priorities. Spline graphs demonstrated that the major non-uniform shape ontogeny correlated with the development of the fins, the anterior dorsal area of the body, the caudal peduncle, the eye and the mouth. Concerning the morphological features, shi drum larvae are characterized by an upward anterior bending of the notochord. The ontogeny of the fins began with the formation of the pectoral buds (2.9 mm TL), continued with the notochord flexion (4.3 mm TL, associated with the caudal fin development), the appearance of the pelvic buds, the first anal rays (4.5 mm TL) and the first dorsal rays (4.8 mm TL). Shi drum juveniles presented 25 vertebrae and the following dominant fin types: D XI,23, AII,6, VI,5, P17 and C17. [source] Phenotypic variation among populations of Atherinops affinis(Atherinopsidae) with insights from a geometric morphometric analysisJOURNAL OF FISH BIOLOGY, Issue 4 2004K. M. O'Reilly Morphological character variation was examined in Atherinops affinis, a temperate marine silverside with a broad geographic range and presumed limited powers of dispersal. Populations of this species were sampled from three California mainland sites, one Channel Island site and one site in the upper Gulf of California. A geometric morphometric analysis yielded higher resolution in the assessment of phenotypic divergence among the four Pacific coast populations than either body measurement or meristic analysis, and it showed that most of the shape variation among these populations occurs in the head region and body depth of the fish. All three analyses supported the hypothesis that populations of A. affinis from central and southern California coastal waters and from Santa Catalina Island are morphologically distinct from each other; the Santa Catalina Island population was found to be the most divergent. On the basis of meristic characters alone, the population of A. affinis from the upper Gulf of California was different from A. affinis populations along the Pacific coast of California. The analyses revealed variation in several morphological characters, e.g. body depth and meristics, known to vary in association with environmental conditions. Given that A. affinis appears to have low among-population genetic variation, this species may be phenotypically plastic in response to the environmental conditions of the habitat of each population. [source] Skull shape and feeding strategy in Sphenodon and other Rhynchocephalia (Diapsida: Lepidosauria),JOURNAL OF MORPHOLOGY, Issue 8 2008Marc E.H. Jones Abstract The Rhynchocephalia are a group of small diapsid reptiles that were globally distributed during the early Mesozoic. By contrast, the only extant representatives, Sphenodon punctatus and S. guntheri (Tuatara), are restricted to New Zealand off-shore islands. The Rhynchocephalia are widely considered to be morphologically uniform but research over the past 30 years has revealed unexpected phenotypic and taxonomic diversity. Phylogenetically "basal taxa" generally possess relatively simple conical or columnar teeth whereas more derived taxa possessed stouter flanged teeth and sophisticated shearing mechanisms: orthal in some (e.g., Clevosaurus hudsoni) and propalinal in others (e.g., S. punctatus). This variation in feeding apparatus suggests a wide range of feeding niches were exploited by rhynchocephalians. The relationship of skull shape to skull length, phylogenetic grouping, habit, and characters relating to the feeding apparatus are explored here with geometric morphometric analysis on two-dimensional landmarks. Principle components analysis demonstrates that there are significant differences between phylogenetic groups. In particular, Sphenodon differs significantly from all well known fossil taxa including the most phylogenetically basal forms. Therefore, it is not justifiable to use Sphenodon as a solitary outgroup when studying skull shape and feeding strategy in squamates; rhynchocephalian fossil taxa also need to be considered. There are also significant differences between the skull shapes of aquatic taxa and those of terrestrial taxa. Of the observed variation in skull shape, most variation is subsumed by variation in dentary tooth base shape, the type of jaw movement employed (e.g., orthal vs. propalinal) and the number of palatal tooth rows. By comparison, the presence or absence of flanges, dentary tooth number and palatal tooth row orientation subsume much less. Skull length was also found to be a poor descriptor of overall skull shape. Compared to basal rhynchocephalians members of more derived terrestrial radiations possess an enlarged postorbital area, a high parietal, and a jaw joint positioned ventral to the tooth row. Modification of these features is closely associated with increased biting performance and thus access to novel food items. Some of these same trends are apparent during Sphenodon ontogeny where skull growth is allometric and there is evidence for ontogenetic variation in diet. J. Morphol., 2008. © 2008 Wiley-Liss, Inc. [source] A geometric morphometric analysis of the shape of the first upper molar in mice of the genus Mus (Muridae, Rodentia)JOURNAL OF ZOOLOGY, Issue 4 2006M. Macholán Abstract Phenotypic variation in the shape of the first upper molar among 595 mice, representing nine extant and three extinct taxa of the genus Mus, was studied with thin-plate spline analysis. The reliability of classification of individual specimens into known groups based on their molars varied from 75 to 100%, depending on group and method used. Including 13 sliding semilandmarks to the analysis improved the detection of different kinds of size and shape variation as well as visualization of shape differences between studied groups. Correlation between phylogenetic and morphometric distances suggested about 80% contribution of phylogenetic inertia to the molar shape variation; moreover, the importance of localized versus global shape changes was similar in the detection of phylogenetic signals. Finally, shape changes along individual evolutionary lineages were revealed, suggesting a few cases of reversals, convergence and/or retention of ancestral shape. The evolution of mouse molars has thus been driven by random effects of drift together with stabilizing selection and convergence. [source] A method for quantifying rotational symmetryNEW PHYTOLOGIST, Issue 4 2007Frank M. Frey Summary ,,Here, a new approach for quantifying rotational symmetry based on vector analysis was described and compared with information obtained from a geometric morphometric analysis and a technique based on distance alone. ,,A new method was developed that generates a polygon from the length and angle data of a structure and then quantifies the minimum change necessary to convert that polygon into a regular polygon. This technique yielded an asymmetry score (s) that can range from 0 (perfect symmetry) to 1 (complete asymmetry). Using digital images of Geranium robertianum flowers, this new method was compared with a technique based on lengths alone and with established geometric morphometric methods used to quantify shape variation. ,,Asymmetry scores (s) more clearly described variation in symmetry and were more consistent with a visual assessment of the images than either comparative technique. ,,This procedure is the first to quantify the asymmetry of radial structures accurately, uses easily obtainable measures to calculate the asymmetry score and allows comparisons among individuals and species, even when the comparisons involve structures with different patterns of symmetry. This technique enables the rigorous analysis of polysymmetric structures and provides a foundation for a better understanding of symmetry in nature. [source] Cranial allometry, phylogeography, and systematics of large-bodied papionins (primates: Cercopithecinae) inferred from geometric morphometric analysis of landmark dataTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 2 2003Stephen R. Frost Abstract The cranial morphology of the African Old World monkeys Mandrillus, Papio, and Theropithecus (i.e., baboons) has been the subject of a number of studies investigating their systematic relationships, patterns of scaling, and growth. In this study, we use landmark-based geometric morphometrics and multivariate analysis to assess the effects of size, sex, taxonomy, and geographic location on cranial shape. Forty-five landmarks were digitized in three dimensions on 452 baboon crania and subjected to generalized Procrustes analysis (GPA), which standardizes geometric size but leaves scaling-based shape differences in the data. The resulting shape coordinates were submitted to regression analysis, principal components analysis (PCA), partial least-squares (PLS) analysis, and various clustering techniques. Scaling (shape differences correlated with size) was the largest single factor explaining cranial shape variation. For instance, most (but not all) of the shape differences between the sexes were explained by size dimorphism. However, central tendencies of shape clearly varied by taxon (both specific and subspecific) even after variations in size and sex were adjusted out. Within Papio, about 60% of the size- and sex-adjusted shape variations were explained by the geographic coordinates of the specimen's provenance, revealing a stepped cline in cranial morphology, with the greatest separation between northern and southern populations. Based on evidence from genetic studies, and the presence of at least two major hybrid/interbreeding zones, we interpret the phylogeographic pattern of cranial variation as indicating that these populations are best ranked as subspecies of a single species, rather than as two or more distinct biological species. This objective approach can be applied to other vertebrate species or species groups to help determine the taxonomic rank of problematic taxa. Anat Rec Part A 275A:1048,1072, 2003. © 2003 Wiley-Liss, Inc. [source] Genetic and morphological variation in a Mediterranean glacial refugium: evidence from Italian pygmy shrews, Sorex minutus (Mammalia: Soricomorpha)BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2010RODRIGO VEGA At the Last Glacial Maximum (LGM), the southern European peninsulas were important refugia for temperate species. Current genetic subdivision of species within these peninsulas may reflect past population subdivision at the LGM, as in ,refugia within refugia', and/or at other time periods. In the present study, we assess whether pygmy shrew populations from different regions within Italy are genetically and morphologically distinct. One maternally and two paternally inherited molecular markers (cytochrome b and Y-chromosome introns, respectively) were analysed using several phylogenetic methods. A geometric morphometric analysis was performed on mandibles to evaluate size and shape variability between populations. Mandible shape was also explored with a functional approach that considered the mandible as a first-order lever affecting bite force. We found genetically and morphologically distinct European, Italian, and southern Italian groups. Mandible size increased with decreasing latitude and southern Italian pygmy shrews exhibited mandibles with the strongest bite force. It is not clear whether or not the southern Italian and Italian groups of pygmy shrews occupied different refugia within the Italian peninsula at the LGM. It is likely, however, that geographic isolation earlier than the LGM on islands at the site of present-day Calabria was important in generating the distinctive southern Italian group of pygmy shrews, and also the genetic groups in other small vertebrates that we review here. Calabria is an important hotspot for genetic diversity, and is worthy of conservation attention. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 774,787. [source] The geographic structure of morphological variation in eight species of fiddler crabs (Ocypodidae: genus Uca) from the eastern United States and MexicoBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2010MELANIE J. HOPKINS Species with larger geographic distributions are more likely to encounter a greater variety of environmental conditions and barriers to gene flow than geographically-restricted species. Thus, even closely-related species with similar life-history strategies might vary in degree and geographic structure of variation if they differ in geographic range size. In the present study, we investigated this using samples collected across the geographic ranges of eight species of fiddler crabs (Crustacea: Uca) from the Atlantic and Gulf coasts of North America. Morphological variation in the carapace was assessed using geometric morphometric analysis of 945 specimens. Although the eight Uca species exhibit different degrees of intraspecific variation, widespread species do not necessarily exhibit more intraspecific or geographic variation in carapace morphology. Instead, species with more intraspecific variation show stronger morphological divergence among populations. This morphological divergence is partly a result of allometric growth coupled with differences in maximum body size among populations. On average, 10% of total within-species variation is attributable to allometry. Possible drivers of the remaining morphological differences among populations include gene flow mediated by ocean currents and plastic responses to various environmental stimuli, with isolation-by-distance playing a less important role. The results obtained indicate that morphological divergence among populations can occur over shorter distances than expected based on dispersal potential. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 248,270. [source] |