Geometric Design (geometric + design)

Distribution by Scientific Domains


Selected Abstracts


Geometric design of fluid segments in microreactors using dimensionless numbers

AICHE JOURNAL, Issue 4 2006
Nobuaki Aoki
Abstract In microreactors, reactant fluids are split into many fluid segments and then fed into the reactors to shorten mixing time. Two dimensionless numbers are introduced to represent effects of geometric design factors of fluid segments, such as shapes and arrangements, on reactor performance, namely mixing rate and product yield and selectivity: the ratio of reaction rate to diffusion rate and the aspect ratio of the mean diffusion length in the two-dimensional (2-D) directions in the reactor cross section. Methods to determine these numbers are also proposed. To examine the validity of these numbers on estimating the reactor performance, we compare product yields between each pair of reactors having the different geometric design factors but the same dimensionless numbers using computational fluid dynamics simulations. The results show that these numbers serve as the indices for estimating the reactor performance. Using these numbers, design guidelines for geometry of fluid segments are also discussed. © 2005 American Institute of Chemical Engineers AIChE J, 2006 [source]


Integration of geometric design and mechanical analysis using B-spline functions on surface

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 14 2005
Hee Yuel Roh
Abstract B-spline finite element method which integrates geometric design and mechanical analysis of shell structures is presented. To link geometric design and analysis modules completely, the non-periodic cubic B-spline functions are used for the description of geometry and for the displacement interpolation function in the formulation of an isoparametric B-spline finite element. Non-periodic B-spline functions satisfy Kronecker delta properties at the boundaries of domain intervals and allow the handling of the boundary conditions in a conventional finite element formulation. In addition, in this interpolation, interior supports such as nodes can be introduced in a conventional finite element formulation. In the formulation of the mechanical analysis of shells, a general tensor-based shell element with geometrically exact surface representation is employed. In addition, assumed natural strain fields are proposed to alleviate the locking problems. Various numerical examples are provided to assess the performance of the present B-spline finite element. Copyright © 2005 John Wiley & Sons, Ltd. [source]


A finite volume,multigrid method for flow simulation on stratified porous media on curvilinear co-ordinate systems

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 4 2001
Pablo Calvo
Abstract This paper presents a numerical study of infiltration processes on stratified porous media. The study is carried out to examine the performance of a finite volume method on problems with discontinuous solutions due to the transmission conditions in the interfaces. To discretize the problem, a curvilinear co-ordinate system is used. This permits matching the interface with the boundary of the control volumes that interchange fluxes between layers. The use of the multigrid algorithm for the resulting systems of equations allows problems involving a large number of nodes with low computational cost to be solved. Finally, some numerical experiments, which show the capillary barrier behaviour depending on the material used for the different layers and the geometric design of the interface, are presented. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Observing freeway ramp merging phenomena in congested traffic

JOURNAL OF ADVANCED TRANSPORTATION, Issue 2 2007
Majid Sarvi
This work conducts a comprehensive investigation of traffic behavior and characteristics during freeway ramp merging under congested traffic conditions. On the Tokyo Metropolitan Expressway, traffic congestion frequently occurs at merging bottleneck sections, especially during heavy traffic demand. The Tokyo Metropolitan Expressway public corporation, generally applies different empirical strategies to increase the flow rate and decrease the accident rate at the merging sections. However, these strategies do not rely either on any behavioral characteristics of the merging traffic or on the geometric design of the merging segments. There have been only a few research publications concerned with traffic behavior and characteristics in these situations. Therefore, a three-year study is undertaken to investigate traffic behavior and characteristics during the merging process under congested situations. Extensive traffic data capturing a wide range of traffic and geometric information were collected using detectors, videotaping, and surveys at eight interchanges in Tokyo Metropolitan Expressway. Maximum discharged flow rate from the head of the queue at merging sections in conjunction with traffic and geometric characteristics were analyzed. In addition, lane changing maneuver with respect to the freeway and ramp traffic behaviors were examined. It is believed that this study provides a thorough understanding of the freeway ramp merging dynamics. In addition, it forms a comprehensive database for the development and implementation of congestion management techniques at merging sections utilizing Intelligent Transportation System. [source]


Structured matrix methods for CAGD: an application to computing the resultant of polynomials in the Bernstein basis

NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, Issue 8 2005
Dario A. Bini
Abstract We devise a fast fraction-free algorithm for the computation of the triangular factorization of Bernstein,Bezoutian matrices with entries over an integral domain. Our approach uses the Bareiss fraction-free variant of Gaussian elimination, suitably modified to take into account the structural properties of Bernstein,Bezoutian matrices. The algorithm can be used to solve problems in algebraic geometry that arise in computer aided geometric design and computer graphics. In particular, an example of the application of this algorithm to the numerical computation of the intersection points of two planar rational Bézier curves is presented. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Simulation of pedestrian flows by optimal control and differential games

OPTIMAL CONTROL APPLICATIONS AND METHODS, Issue 3 2003
Serge Hoogendoorn
Abstract Gaining insights into pedestrian flow operations and assessment tools for pedestrian walking speeds and comfort is important in, for instance, planning and geometric design of infrastructural facilities, as well as for management of pedestrian flows under regular and safety-critical circumstances. Pedestrian flow operations are complex, and vehicular flow simulation modelling approaches are generally not applicable to pedestrian flow modelling. This article focusses on pedestrian walking behaviour theory and modelling. It is assumed that pedestrians are autonomous predictive controllers that minimize the subjective predicted cost of walking. Pedestrians predict the behaviour of other pedestrians based on their observations of the current state as well as predictions of the future state, given the assumed walking strategy of other pedestrians in their direct neighbourhood. As such, walking can be represented by a (non-co-operative or co-operative) differential game, where pedestrians may or may not be aware of the walking strategy of the other pedestrians. Copyright © 2003 John Wiley & Sons, Ltd. [source]