Gastric Pathology (gastric + pathology)

Distribution by Scientific Domains


Selected Abstracts


Importance of EGF receptor, HER2/Neu and Erk1/2 kinase signalling for host cell elongation and scattering induced by the Helicobacter pylori CagA protein: antagonistic effects of the vacuolating cytotoxin VacA

CELLULAR MICROBIOLOGY, Issue 3 2009
Nicole Tegtmeyer
Summary Helicobacter pylori is the causative agent of gastric pathologies ranging from chronic gastritis to peptic ulcers and even cancer. Virulent strains carrying both the cag pathogenicity island (cagPAI) and the vacuolating cytotoxin VacA are key players in disease development. The cagPAI encodes a type IV secretion system (T4SS) which forms a pilus for injection of the CagA protein into gastric epithelial cells. Injected CagA undergoes tyrosine phosphorylation and induces actin-cytoskeletal rearrangements involved in host cell scattering and elongation. We show here that the CagA-induced responses can be inhibited in strains expressing highly active VacA. Further investigations revealed that VacA does not interfere with known activities of phosphorylated CagA such as inactivation of Src kinase and cortactin dephosphorylation. Instead, we demonstrate that VacA exhibits inactivating activities on the epidermal growth factor receptor EGFR and HER2/Neu, and subsequently Erk1/2 MAP kinase which are important for cell scattering and elongation. Inactivation of vacA gene, downregulation of the VacA receptor RPTP-,, addition of EGF or expression of constitutive-active MEK1 kinase restored the capability of H. pylori to induce the latter phenotypes. These data demonstrate that VacA can downregulate CagA's effects on epithelial cells, a novel molecular mechanism showing how H. pylori can avoid excessive cellular damage. [source]


Helicobacter pylori,host cell interactions mediated by type IV secretion

CELLULAR MICROBIOLOGY, Issue 7 2005
Kevin M. Bourzac
Summary Helicobacter pylori is a human-specific gastric pathogen that colonizes over half the world's population. Infection with this bacterium is associated with a spectrum of gastric pathologies ranging from mild gastritis to peptic ulcers and gastric cancer. A strong predictor of severe disease outcome is infection with a bacterial strain harbouring the cag (cytotoxin associated gene) pathogenicity island (PAI), a 40 kb stretch of DNA that encodes homologues of several components of a type IV secretion system (TFSS). One gene within the cag PAI, cagA, has been shown to encode a substrate for the TFSS which is translocated into host cells and causes multiple changes in host cell signalling. Here we review recent advances in the characterization of type IV secretion, the activities of CagA and CagA-independent effects of the TFSS, which are contributing to our understanding of H. pylori pathogenesis. [source]


Pathogenesis of Helicobacter pylori Infection

HELICOBACTER, Issue 2008
Javier Torres
Abstract The clinical outcome of Helicobacter pylori infection is determined by a complex scenario of interactions between the bacterium and the host. The main bacterial factors associated with colonization and pathogenicity comprise outer membrane proteins including BabA, SabA, OipA, AlpA/B, as well as the virulence factors CagA in the cag pathogenicity island (cagPAI) and the vacuolating cytotoxin VacA. The multitude of these proteins and allelic variation makes it extremely difficult to test the contribution of each individual factor. Much effort has been put into identifying the mechanism associated with H. pylori -associated carcinogenesis. Interaction between bacterial factors such as CagA and host signal transduction pathways seems to be critical for mediating the induction of membrane dynamics, actin-cytoskeletal rearrangements and the disruption of cell-to-cell junctions as well as proliferative, pro-inflammatory and antiapoptotic nuclear responses. An animal model using the Mongolian gerbil is a useful system to study the gastric pathology of H. pylori infection. [source]


Pathogenesis of Helicobacter pylori Infection

HELICOBACTER, Issue 2007
Shin Maeda
Abstract The clinical outcome of Helicobacter pylori infection is determined by a complex interaction between the bacterium and the host. The main bacterial factors associated with pathogenicity comprise outer membrane proteins, including BabA, SabA, OipA, AlpA, and AlpB, the vacuolating cytotoxin VacA and the products of cagPAI. The multitude of putative virulence factors makes it extremely difficult to test the contribution of each individual factor. Much effort has been put into identifying the mechanism associated with H. pylori -associated carcinogenesis. Interaction between bacterial factors such as CagA and host signal transduction pathways seems to be critical for mediating cell transformation, cell proliferation, invasion, apoptosis/anti-apoptosis, and angiogenesis. An animal model using the Mongolian gerbil is a useful model for showing gastric pathology due to H. pylori infection which is similar to that in humans and can be used to evaluate virulence factors including CagA, host responses, and environmental factors such as salt intake. [source]


Pathology of non-infective gastritis

HISTOPATHOLOGY, Issue 1 2007
A Srivastava
The discovery of Helicobacter pylori and its intimate role in the development of the most common form of chronic gastritis has elicited a much-needed interest in non-neoplastic gastric pathology. This has been paralleled by an increase in upper endoscopic examinations, which allow recognition of novel patterns and distribution of mucosal injury. Numerous attempts at classification have been made, most based on the acuteness or chronicity of gastric mucosal injury. In this review, we will not offer a new classification but present a detailed description of the major clinicopathological entities, based either on the salient morphological features or the underlying aetiologies, i.e. iatrogenic, autoimmune, vascular or idiopathic. [source]


Effect of Helicobacter pylori infection on cyclooxygenase-2 expression in gastric antral mucosa

JOURNAL OF DIGESTIVE DISEASES, Issue 2 2002
Hong LU
OBJECTIVE: Helicobacter pylori infection is a major etiological cause of chronic gastritis. Inducible cyclooxygenase (COX-2) is an important regulator of mucosal inflammation. Recent studies indicate that expression of COX-2 may contribute to gastro­intestinal carcinogenesis. The aim of this study was to investigate the effects of H. pylori infection and eradication therapy on COX-2 expression in gastric antral mucosa. METHODS: Antral biopsies were taken from 46 H. pylori- infected patients, who also had chronic gastritis, both before and after anti- H. pylori treatment. The COX-2 protein was stained by using immunohistochemical methods and COX-2 expression was quantified as the percentage of epithelial cells expressing COX-2. Gastritis and H. pylori infection status were graded according to the Sydney system. RESULTS: Cyclooxygenase-2 expression was detected in the cytoplasm of gastric antral epithelial cells both before and after the eradication of H. pylori. Cyclooxygenase-2 expression in mucosa with H. pylori infection was compared with the corresponding mucosa after successful H. pylori eradication (20.1 ± 13.1%vs 13.8 ± 5.9%; P < 0.05). At the same time, COX-2 expression in H. pylori -infected mucosa was com­pared with the normal controls (18.0 ± 14.1%vs 12.3 ± 4.6%, P < 0.05). Expression of COX-2 was correlated with the degree of chronic inflammation (r= 0.78, P < 0.05). CONCLUSIONS: Our results showed that H. pylori infection leads to gastric mucosal overexpression of COX-2 protein, suggesting that the enzyme is involved in H. pylori -related gastric pathology in humans. [source]


Effect of methanolic extract of Terminalia arjuna against Helicobacter pylori 26695 lipopolysaccharide-induced gastric ulcer in rats

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 4 2008
Rethinam Sundaresan Devi
Helicobacter pylori lipopolysaccharide (HP-LPS) is a potent virulence factor in the causation of gastric ulcer and gastritis. H. pylori -induced gastric pathology is prevalent throughout the world. Herbal medicines are attracting attention because of their traditional values, popularity and belief, as well as for their advantages such as less toxicity, affordability and medicinal value. The present study aimed to evaluate the anti-ulcer effect of a methanolic extract of Terminalia arjuna (TA) against HP-LPS-induced gastric damage in rats. Ulcers were induced with HP-LPS (50 ,g per animal) administered orally daily for 3 days. The efficacy of TA on gastric secretory parameters such as volume of gastric juice, pH, free and total acidity, pepsin concentration, and the cytoprotective parameters such as protein-bound carbohydrate complexes in gastric juice and gastric mucosa was assessed. The protective effect of TA was also confirmed by histopathological examination of gastric mucosa. HP-LPS-induced alterations in gastric secretory parameters were altered favourably in rats treated with TA, suggesting that TA has an anti-secretory role. Furthermore, HP-LPS-induced impairments in gastric defence factors were also prevented by treatment with TA. These results suggest that the severe cellular damage and pathological changes caused by HP-LPS are mitigated by TA; these effects are comparable with those of sucralfate. The anti-ulcer effect of TA may reflect its ability to combat factors that damage the gastric mucosa, and to protect the mucosal defensive factors. [source]