Gamma Activity (gamma + activity)

Distribution by Scientific Domains


Selected Abstracts


Gamma activity and reactivity in human thalamic local field potentials

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2009
Florian Kempf
Abstract Depth recordings in patients with Parkinson's disease on dopaminergic therapy have revealed a tendency for oscillatory activity in the basal ganglia that is sharply tuned to frequencies of ,70 Hz and increases with voluntary movement. It is unclear whether this activity is essentially physiological and whether it might be involved in arousal processes. Here we demonstrate an oscillatory activity with similar spectral characteristics and motor reactivity in the human thalamus. Depth signals were recorded in 29 patients in whom the ventral intermediate or centromedian nucleus were surgically targeted for deep brain stimulation. Thirteen patients with four different pathologies showed sharply tuned activity centred at ,70 Hz in spectra of thalamic local field potential (LFP) recordings. This activity was modulated by movement and, critically, varied over the sleep,wake cycle, being suppressed during slow wave sleep and re-emergent during rapid eye movement sleep, which physiologically bears strong similarities with the waking state. It was enhanced by startle-eliciting stimuli, also consistent with modulation by arousal state. The link between this pattern of thalamic activity and that of similar frequency in the basal ganglia was strengthened by the finding that fast thalamic oscillations were lost in untreated parkinsonian patients, paralleling the behaviour of this activity in the basal ganglia. Furthermore, there was sharply tuned coherence between thalamic and pallidal LFP activity at ,70 Hz in eight out of the 11 patients in whom globus pallidus and thalamus were simultaneously implanted. Subcortical oscillatory activity at ,70 Hz may be involved in movement and arousal. [source]


Enhancement of temporal and spatial synchronization of entorhinal gamma activity by phase reset

HIPPOCAMPUS, Issue 4 2002
Clayton T. Dickson
Abstract The synchronization of cortical gamma oscillatory activity (25,80 Hz) is thought to coordinate neuronal assemblies in the processing and storage of information. The mechanism by which independently oscillating and distantly located cortical zones become synchronized is presumed to involve activity in corticocortical connections, although evidence supporting this conjecture has only been indirect. In the present study, we show that activation of synaptic inputs within and to the medial entorhinal cortex (mEC) of the in vitro isolated guinea pig brain preparation resets the phase of ongoing gamma activity induced by muscarinic receptor agonism with carbachol (frequency: 24 ± 2 Hz at 32°C). Phase reset was associated with a transient enhancement of the synchronization of gamma activity recorded at distant (>1 mm) mEC sites, across which low coherence (>0.75) was observed before stimulation. This increase in synchronization, as measured by cross-correlation analysis, was restricted to a maximal period of 200 ms after either local mEC or CA1 afferent stimulation. The results provide direct evidence that synaptic activation can enhance the rhythmic synchronization of spatially remote, independently oscillating neuronal assemblies in the mEC through a mechanism of synaptically evoked phase reset. Dynamic functional grouping of oscillatory discharges across long distances in the mEC may underlie coding processes involved in the integration and storage of incoming information and thus may be important for the role of this region in memory processes. Hippocampus 2002;12:447,456. © 2002 Wiley-Liss, Inc. [source]


Task-related gamma-band dynamics from an intracerebral perspective: Review and implications for surface EEG and MEG

HUMAN BRAIN MAPPING, Issue 6 2009
Karim Jerbi
Abstract Although non-invasive techniques provide functional activation maps at ever-growing spatio-temporal precision, invasive recordings offer a unique opportunity for direct investigations of the fine-scale properties of neural mechanisms in focal neuronal populations. In this review we provide an overview of the field of intracranial Electroencephalography (iEEG) and discuss its strengths and limitations and its relationship to non-invasive brain mapping techniques. We discuss the characteristics of invasive data acquired from implanted epilepsy patients using stereotactic-electroencephalography (SEEG) and electrocorticography (ECoG) and the use of spectral analysis to reveal task-related modulations in multiple frequency components. Increasing evidence suggests that gamma-band activity (>40 Hz) might be a particularly efficient index for functional mapping. Moreover, the detection of high gamma activity may play a crucial role in bridging the gap between electrophysiology and functional imaging studies as well as in linking animal and human data. The present review also describes recent advances in real-time invasive detection of oscillatory modulations (including gamma activity) in humans. Furthermore, the implications of intracerebral findings on future non-invasive studies are discussed. Hum Brain Mapp, 2009. © 2009 Wiley-Liss, Inc. [source]


Functional source separation applied to induced visual gamma activity

HUMAN BRAIN MAPPING, Issue 2 2008
Giulia Barbati
Abstract Objective of this work was to explore the performance of a recently introduced source extraction method, FSS (Functional Source Separation), in recovering induced oscillatory change responses from extra-cephalic magnetoencephalographic (MEG) signals. Unlike algorithms used to solve the inverse problem, FSS does not make any assumption about the underlying biophysical source model; instead, it makes use of task-related features (functional constraints) to estimate source/s of interest. FSS was compared with blind source separation (BSS) approaches such as Principal and Independent Component Analysis, PCA and ICA, which are not subject to any explicit forward solution or functional constraint, but require source uncorrelatedness (PCA), or independence (ICA). A visual MEG experiment with signals recorded from six subjects viewing a set of static horizontal black/white square-wave grating patterns at different spatial frequencies was analyzed. The beamforming technique Synthetic Aperture Magnetometry (SAM) was applied to localize task-related sources; obtained spatial filters were used to automatically select BSS and FSS components in the spatial area of interest. Source spectral properties were investigated by using Morlet-wavelet time-frequency representations and significant task-induced changes were evaluated by means of a resampling technique; the resulting spectral behaviours in the gamma frequency band of interest (20,70 Hz), as well as the spatial frequency-dependent gamma reactivity, were quantified and compared among methods. Among the tested approaches, only FSS was able to estimate the expected sustained gamma activity enhancement in primary visual cortex, throughout the whole duration of the stimulus presentation for all subjects, and to obtain sources comparable to invasively recorded data. Hum Brain Mapp 29:131,141, 2008. © 2007 Wiley-Liss, Inc. [source]