GABAergic Interneurons (gabaergic + interneuron)

Distribution by Scientific Domains


Selected Abstracts


Extracerebellar progenitors grafted to the neurogenic milieu of the postnatal rat cerebellum adapt to the host environment but fail to acquire cerebellar identities

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2010
Chiara Rolando
Abstract Stem or progenitor cells acquire specific regional identities during early ontogenesis. Nonetheless, there is evidence that cells heterotopically transplanted to neurogenic regions of the developing or mature central nervous system may switch their fate to adopt host-specific phenotypes. Here, we isolated progenitor cells from different germinative sites along the neuraxis where GABAergic interneurons are produced (telencephalic subventricular zone, medial ganglionic eminence, ventral mesencephalon and dorsal spinal cord), and grafted them to the prospective white matter of the postnatal rat cerebellum, at the time when local interneurons are generated. The phenotype acquired by transplanted cells was assessed by different criteria, including expression of region-specific transcription factors, acquisition of morphological and neurochemical traits, and integration in the cerebellar cytoarchitecture. Regardless of their origin, all the different types of donor cells engrafted in the cerebellar parenchyma and developed mature neurons that shared some morphological and neurochemical features with local inhibitory interneurons, particularly in the deep nuclei. Nevertheless, transplanted cells failed to activate cerebellar-specific regulatory genes. In addition, their major structural features, the expression profiles of type-specific markers and the laminar placement in the recipient cortex did not match those of endogenous interneurons generated during the same developmental period. Therefore, although exogenous cells are influenced by the cerebellar milieu and show remarkable capabilities for adapting to the foreign environment, they essentially fail to switch their fate, integrate in the host neurogenic mechanisms and adopt clear-cut cerebellar identities. [source]


Nociceptive spinothalamic tract and postsynaptic dorsal column neurons are modulated by paraventricular hypothalamic activation

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2008
Gerardo Rojas-Piloni
Abstract Previously, we demonstrated that stimulation of the paraventricular hypothalamic nucleus diminishes the nociceptive dorsal horn neuronal responses, and this decrease was mediated by oxytocin in the rat. In addition, we have proposed that oxytocin indirectly inhibits sensory transmission in dorsal horn neurons by exciting spinal inhibitory GABAergic interneurons. The main purpose of the present study was to identify which of the neurons projecting to supraspinal structures to transmit somatic information are modulated by the hypothalamic-spinal descending activation. In anaesthetized rats, single-unit extracellular and juxtacellular recordings were made from dorsal horn lumbar segments, which receive afferent input from the toe and hind-paw regions. The projecting spinothalamic tract and postsynaptic dorsal column system were identified antidromically. Additionally, in order to label the projecting dorsal horn neurons, we injected fluorescent retrograde neuronal tracers into the ipsilateral gracilis nucleus and contralateral ventroposterolateral thalamic nucleus. Hence, juxtacellular recordings were made to iontophoretically label the recorded neurons with a fluorescent dye and identify the recorded projecting cells. We found that only nociceptive evoked responses in spinothalamic tract and postsynaptic dorsal column neurons were significantly inhibited (48.1 ± 4.6 and 47.7 ± 8.2%, respectively) and non-nociceptive responses were not affected by paraventricular hypothalamic nucleus stimulation. We conclude that the hypothalamic-spinal system selectively affects the transmission of nociceptive information of projecting spinal cord cells. [source]


Recruiting new neurons from the subventricular zone to the rat postnatal cortex: an organotypic slice culture model

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2008
A. G. Dayer
Abstract The neurogenic subventricular zone (SVZ) of the lateral ventricle is a potential source for neuronal replacement in the postnatal or adult neocortex after injury. Here we present a novel model system to directly explore the cellular mechanisms of this process. In order to visualize directed migration from the SVZ towards the cortex, we transplanted green fluorescent protein-labeled progenitor/stem cells into the SVZ of newborn rats. At 2 days after transplantation, we generated organotypic slice cultures and applied fluorescent time-lapse imaging to explore directly the migration and integration of donor cells into the host tissue for up to 2 weeks. Our studies revealed that subventricular grafts provide a significant number of immature neurons to neocortical regions. In the cortex, immature neurons first migrate radially towards the pial surface and then differentiate into GABAergic interneurons. We conclude that our model system presents a novel and effective experimental paradigm to evaluate the recruitment of SVZ-derived neurons into the postnatal cortex, a phenomenon that may represent a potential route for cortical repair. [source]


Vasopressin modulates lateral septal network activity via two distinct electrophysiological mechanisms

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2007
G. Allaman-Exertier
Abstract The lateral septal area is rich in vasopressin V1A receptors and is densely innervated by vasopressinergic axons, originating mainly from the bed nucleus of the stria terminalis and the amygdala. Genetic and behavioral studies provide evidence that activation of vasopressin receptors in this area plays a determinant role in promoting social recognition. What could be the neuronal mechanism underlying this effect? Using rat brain slices and whole-cell recordings, we found that lateral septal neurons are under the influence of a basal GABAergic inhibitory input. Vasopressin, acting via V1A but not V1B receptors, greatly enhanced this input in nearly all neurons. The peptide had no effect on miniature inhibitory postsynaptic currents, indicating that it acted on receptors located in the somatodendritic membrane, rather than on axon terminals, of GABAergic interneurons. Cell-attached recordings showed that vasopressin can cause a direct excitation of a subpopulation of lateral septal neurons by acting via V1A but not V1B receptors. The presence in the lateral septum of V1A but not of V1B receptors was confirmed by competition binding studies using light microscopic autoradiography. In conclusion, vasopressin appears to act in the lateral septum in a dual mode: (i) by causing a direct excitation of a subpopulation of neurons, and (ii) by causing an indirect inhibition of virtually all lateral septal neurons. This modulation by vasopressin of the lateral septal circuitry may be part of the neuronal mechanism by which the peptide, acting via V1A receptors, promotes social recognition. [source]


AMPA receptor-mediated presynaptic inhibition at cerebellar GABAergic synapses: a characterization of molecular mechanisms

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2004
Shin'Ichiro Satake
Abstract A major subtype of glutamate receptors, AMPA receptors (AMPARs), are generally thought to mediate excitation at mammalian central synapses via the ionotropic action of ligand-gated channel opening. It has recently emerged, however, that synaptic activation of AMPARs by glutamate released from the climbing fibre input elicits not only postsynaptic excitation but also presynaptic inhibition of GABAergic transmission onto Purkinje cells in the cerebellar cortex. Although presynaptic inhibition is critical for information processing at central synapses, the molecular mechanisms by which AMPARs take part in such actions are not known. This study therefore aimed at further examining the properties of AMPAR-mediated presynaptic inhibition at GABAergic synapses in the rat cerebellum. Our data provide evidence that the climbing fibre-induced inhibition of GABA release from interneurons depends on AMPAR-mediated activation of GTP-binding proteins coupled with down-regulation of presynaptic voltage-dependent Ca2+ channels. A Gi/o -protein inhibitor, N-ethylmaleimide, selectively abolished the AMPAR-mediated presynaptic inhibition at cerebellar GABAergic synapses but did not affect AMPAR-mediated excitatory actions on Purkinje cells. Furthermore, both Gi/o -coupled receptor agonists, baclofen and DCG-IV, and the P/Q-type calcium channel blocker ,-agatoxin IVA markedly occluded the AMPAR-mediated inhibition of GABAergic transmission. Conversely, AMPAR activation inhibited action potential-triggered Ca2+ influx into individual axonal boutons of cerebellar GABAergic interneurons. By suppressing the inhibitory inputs to Purkinje cells, the AMPAR-mediated presynaptic inhibition could thus provide a feed-forward mechanism for the information flow from the cerebellar cortex. [source]


Postnatal maturation of GABAA and GABAC receptor function in the mammalian superior colliculus

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2001
Mathias Boller
Abstract In the stratum griseum superficiale (SGS) of the mammalian superior colliculus, GABAC receptors seem to control the excitability of projection neurons by selective inactivation of local GABAergic interneurons. As the onset of visual responses to SC begins well after birth in the rat, it is possible to study developmental changes in GABAergic mechanisms that are linked to the onset of visual information processing. In order to analyse postnatal changes in inhibitory mechanisms that involve GABA receptor function, we used extracellular field potential (FP) recordings and single cell patch-clamp techniques in slices from postnatal day 4 (P4) to P32 and examined the effects of GABA and muscimol on electrically evoked SGS cell activity. While GABAA receptor activation affected FP amplitudes throughout postnatal development, GABAC receptor activation did not significantly change FP amplitudes until the third postnatal week. Results from patch-clamping single cells, however, clearly demonstrate that GABAC receptors are already functional at P4 , similar to GABAA receptors. Throughout postnatal development, activation of GABAC receptors leads to a strong inhibition of inhibitory postsynaptic activity, indicating that GABAC receptors are expressed by inhibitory interneurons. Furthermore, the proportion of neurons that show decreased excitatory postsynaptic activity during GABAC receptor activation correlates with the proportion of GABAergic interneurons in SGS. Our patch-clamp results indicate that the functional expression of GABAC receptors by GABAergic interneurons does not change significantly during postnatal development. However, our measurements of FP amplitudes indicate that the maturation of the efferent connections of these GABAergic neurons within SGS during the third postnatal week strongly changes GABAC receptor function. [source]


Central control of thermogenesis in mammals

EXPERIMENTAL PHYSIOLOGY, Issue 7 2008
Shaun F. Morrison
Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature in mammals and birds during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. The primary sources of neurally regulated metabolic heat production are mitochondrial oxidation in brown adipose tissue, increases in heart rate and shivering in skeletal muscle. Thermogenesis is regulated in each of these tissues by parallel networks in the central nervous system, which respond to feedforward afferent signals from cutaneous and core body thermoreceptors and to feedback signals from brain thermosensitive neurons to activate the appropriate sympathetic and somatic efferents. This review summarizes the research leading to a model of the feedforward reflex pathway through which environmental cold stimulates thermogenesis and discusses the influence on this thermoregulatory network of the pyrogenic mediator, prostaglandin E2, to increase body temperature. The cold thermal afferent circuit from cutaneous thermal receptors ascends via second-order thermosensory neurons in the dorsal horn of the spinal cord to activate neurons in the lateral parabrachial nucleus, which drive GABAergic interneurons in the preoptic area to inhibit warm-sensitive, inhibitory output neurons of the preoptic area. The resulting disinhibition of thermogenesis-promoting neurons in the dorsomedial hypothalamus and possibly of sympathetic and somatic premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, activates excitatory inputs to spinal sympathetic and somatic motor circuits to drive thermogenesis. [source]


Developmental profile of ErbB receptors in murine central nervous system: Implications for functional interactions

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2005
Irina J. Fox
Abstract The ErbB family, ErbB1 (also known as the epidermal growth factor receptor EGFR), ErbB2, ErbB3, and ErbB4 comprise a group of receptor tyrosine kinases that interact with ligands from the epidermal growth factor (EGF) superfamily, subsequently dimerize, catalytically activate each other by cross-phosphorylation, and then stimulate various signaling pathways. To gain a better understanding of in vivo functions of ErbB receptors in the central nervous system, the current study examined their mRNA expression throughout development in the mouse brain via in situ hybridization. EGFR, ErbB2, and ErbB4 exhibited distinct but sometimes overlapping distributions in multiple cell types within germinal zones, cortex, striatum, and hippocampus in prenatal and postnatal development. In addition, a subpopulation of cells positive for ErbB4 mRNA in postnatal cortex and striatum coexpressed mRNA for either EGFR or GAD67, a marker for ,-aminobutyric acid (GABA)ergic interneurons, suggesting that both ErbB4 and EGFR are coexpressed in GABAergic interneurons. In contrast, ErbB3 mRNA was not detected within the brain during development and only appeared in white matter tracts in adulthood. Together, these findings suggest that ErbB receptors might mediate multiple functions in central nervous system development, some of which may be initiated by EGFR/ErbB4 heterodimers in vivo. © 2005 Wiley-Liss, Inc. [source]


Profound loss of GABAergic interneurons in the PPT1 knockout mouse model of infantile neuronal ceroid lipofuscinosis

NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 2 2002
J. D. Cooper
Introduction:, The neuronal ceroid lipofuscinoses (NCL) are progressive neurodegenerative disorders with onset from infancy to adulthood that are manifested by blindness, seizures and dementia. In infantile NCL (INCL), a mutation in the palmitoyl protein thioesterase (PPT1) gene results in loss of PPT1 activity and lysosomal accumulation of autofluorescent proteolipid in the brain and other tissues. We have generated a PPT1 knockout mouse model of INCL (PPT1,/,) and characterized pathological changes in the CNS of these mice, which die by 8 months of age. Results:, 7-month-old PPT1,/, exhibited NCL-like pathology with prominent accumulation of autofluorescent lipopigment throughout the CNS, together with pronounced cerebral atrophy. Staining for phenotypic markers normally present in subpopulations of interneurons in the cortex and hippocampus revealed progressive loss of staining in the cortex and hippocampus, with persisting interneurons exhibiting pronounced hypertrophy and abnormal dendritic morphology. Conclusions:, Taken together with our findings in the other mouse models of NCL and preliminary data from NCL patient derived tissue, these results provide further substantive evidence for the involvement of interneurons in the NCLs. Acknowledgements:, Supported by The Batten's Disease Support and Research Association, The Natalie Fund, The Remy Fund; Batten's Disease Family Association. [source]


Quantitative morphology and postsynaptic targets of thalamocortical axons in critical period and adult ferret visual cortex

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2005
Alev Erisir
Abstract Thalamocortical axons segregate into ocular dominance columns several weeks before the onset of critical period plasticity in ferret visual cortex, a stage characterized by anatomical changes in thalamic input as a consequence of abnormal visual stimulation. In search of possible anatomical correlates of this plasticity, we examined, at electron microscope resolution, the morphology and the synapsing and target selection properties of thalamic axons in ferret visual cortex during and after the critical period. Adult thalamocortical terminals visualized by anterograde tract-tracing display significantly larger cross-section areas than terminals at postnatal day (P) 35, P40, and P49 critical period ages. They are also significantly larger than nonthalamocortical terminals, which attain an adult-like size distribution by P40. The synaptic zones of adult thalamocortical terminals are significantly larger than those of critical period terminals. Perforated and invaginated synapses are encountered frequently on thalamic axons in both adulthood and the P40,49 age group. This result contradicts the view that synaptic perforations and spinules are indicative of a capacity for plasticity. It also suggests that at least some morphological features of thalamic terminals attain maturity on a developmental schedule that is independent of critical period plasticity. Connectivity properties of labeled axons, however, suggest an active role for thalamocortical axons in the critical period. In P40, P49, and adult brains, 23%, 17%, and 9%, respectively, of all thalamocortical synapses contact GABAergic interneurons, suggesting that thalamic input is more strongly involved in driving inhibitory circuits in young ages. Furthermore, thalamocortical axons in P35,49 brains form about 60% more synapses per axon length than in adult brains, suggesting that stabilization of thalamic synapses at the end of the critical period may be accompanied by a reduction of synaptic contacts, as well as a reorganization of postsynaptic circuit selectivity. J. Comp. Neurol. 485:11,31, 2005. © 2005 Wiley-Liss, Inc. [source]


Comparative cellular distribution of GABAA and GABAB receptors in the human basal ganglia: Immunohistochemical colocalization of the ,1 subunit of the GABAA receptor, and the GABABR1 and GABABR2 receptor subunits

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 4 2004
Henry J. Waldvogel
Abstract The GABAB receptor is a G-protein linked metabotropic receptor that is comprised of two major subunits, GABABR1 and GABABR2. In this study, the cellular distribution of the GABABR1 and GABABR2 subunits was investigated in the normal human basal ganglia using single and double immunohistochemical labeling techniques on fixed human brain tissue. The results showed that the GABAB receptor subunits GABABR1 and GABABR2 were both found on the same neurons and followed the same distribution patterns. In the striatum, these subunits were found on the five major types of interneurons based on morphology and neurochemical labeling (types 1, 2, 3, 5, 6) and showed weak labeling on the projection neurons (type 4). In the globus pallidus, intense GABABR1 and GABABR2 subunit labeling was found in large pallidal neurons, and in the substantia nigra, both pars compacta and pars reticulata neurons were labeled for both receptor subunits. Studies investigating the colocalization of the GABAA ,1 subunit and GABAB receptor subunits showed that the GABAA receptor ,1 subunit and the GABABR1 subunit were found together on GABAergic striatal interneurons (type 1 parvalbumin, type 2 calretinin, and type 3 GAD neurons) and on neurons in the globus pallidus and substantia nigra pars reticulata. GABABR1 and GABABR2 were found on substantia nigra pars compacta neurons but the GABAA receptor ,1 subunit was absent from these neurons. The results of this study provide the morphological basis for GABAergic transmission within the human basal ganglia and provides evidence that GABA acts through both GABAA and GABAB receptors. That is, GABA acts through GABAB receptors, which are located on most of the cell types of the striatum, globus pallidus, and substantia nigra. GABA also acts through GABAA receptors containing the ,1 subunit on specific striatal GABAergic interneurons and on output neurons of the globus pallidus and substantia nigra pars reticulata. J. Comp. Neurol. 470:339,356, 2004. © 2004 Wiley-Liss, Inc. [source]


Parvalbumin-, calbindin-, and calretinin-immunoreactive hippocampal interneuron density in autism

ACTA NEUROLOGICA SCANDINAVICA, Issue 2 2010
Y. A. Lawrence
Lawrence YA, Kemper TL, Bauman ML, Blatt GJ. Parvalbumin-, calbindin-, and calretinin-immunoreactive hippocampal interneuron density in autism. Acta Neurol Scand: 2010: 121: 99,108. © 2009 The Authors Journal compilation © 2009 Blackwell Munksgaard. Background ,, There has been a long-standing interest in the possible role of the hippocampus in autism and both postmortem brain and neuroimaging studies have documented varying abnormalities in this limbic system structure. Aims ,, This study investigates the density of subsets of hippocampal interneurons, immunostained with the calcium binding proteins, calbindin (CB), calretinin (CR) and parvalbumin (PV) to determine whether specific subpopulations of interneurons are impacted in autism. Materials and methods ,, Unbiased stereological techniques were used to quantify the neuronal density of these immunoreactive subpopulations of gamma-aminobutyric acid-ergic (GABAergic) interneurons analyzed in the CA and subicular fields in postmortem brain material obtained from five autistic and five age-, gender- and postmortem interval-matched control cases. Results ,, Results indicate a selective increase in the density of CB-immunoreactive interneurons in the dentate gyrus, an increase in CR-immunoreactive interneurons in area CA1, and an increase in PV-immunoreactive interneurons in areas CA1 and CA3 in the hippocampus of individuals with autism when compared with controls. Discussion/conclusions ,, Although our sample size is small, these findings suggest that GABAergic interneurons may represent a vulnerable target in the brains of individuals with autism, potentially impacting upon their key role in learning and information processing. These preliminary findings further suggest the need for future more expanded studies in a larger number of postmortem brain samples from cases of autism and controls. [source]


Development of cortical GABAergic circuits and its implications for neurodevelopmental disorders

CLINICAL GENETICS, Issue 1 2007
G Di Cristo
GABAergic interneurons powerfully control the function of cortical networks. In addition, they strongly regulate cortical development by modulating several cellular processes such as neuronal proliferation, migration, differentiation and connectivity. Not surprisingly, aberrant development of GABAergic circuits has been implicated in many neurodevelopmental disorders including schizophrenia, autism and Tourette's syndrome. Unfortunately, efforts directed towards the comprehension of the mechanisms regulating GABAergic circuits formation and function have been impaired by the strikingly heterogeneity, both at the morphological and functional level, of GABAergic interneurons. Recent technical advances, including the improvement of interneurons-specific labelling techniques, have started to reveal the basic principles underlying this process. This review summarizes recent findings on the mechanisms underlying the construction of GABAergic circuits in the cortex, with a particular focus on potential implications for brain diseases with neurodevelopmental origin. [source]