Home About us Contact | |||
G M (g + m)
Selected AbstractsEstimation of temporal variation in splash detachment in two Japanese cypress plantations of contrasting ageEARTH SURFACE PROCESSES AND LANDFORMS, Issue 9 2010Y. Wakiyama Abstract To elucidate splash erosion processes under natural rainfall conditions, temporal variations in splash detachment were observed using a piezoelectric saltation sensor (H11B; Sensit Co., Portland, ND, USA). Preliminary laboratory tests of Sensit suggested that they were suitable for field observations. Field observations were conducted between July and September 2006 in 21- and 36-year-old Japanese cypress (Chamaecyparis obtusa) plantations with mean stand heights of 9·2,m and 17·4,m, respectively. Splash detachment (in g m,2) was measured seven times using splash cups, and raindrop kinetic energy (in J,m,2,mm,1) in both stands was measured using laser drop-sizing (LD) gauges. Sensit was installed to record saltation counts, which were converted to temporal data of splash detachment (splash rate; in g m,2 10,min,1) using the relationship between splash detachment and saltation counts. Surface runoff was monitored using runoff plots of 0·5,m width and 2·0,m length to obtain temporal data of flow depth (in millimeters). Both total splash detachment and raindrop kinetic energy were larger in the older stand. Increased splash rates per unit throughfall were found in both stands after rainless durations longer than approximately one day in both stands. However, a lower splash rate was found in the 21-year stand after rainfall events. During extreme rainstorms, the 21-year stand showed a low runoff rate and a decline in the splash rate, while the 36-year stand showed a higher splash rate and increased flow depth. The piezoelectric sensor proved to be a useful means to elucidate splash erosion processes in field conditions. Copyright © 2010 John Wiley & Sons, Ltd. [source] Windblown dust influenced by conventional and undercutter tillage within the Columbia Plateau, USA,EARTH SURFACE PROCESSES AND LANDFORMS, Issue 10 2009B. S. Sharratt Abstract Exceedance of the US Environmental Protection Agency national ambient air quality standard for PM10 (particulate matter ,10 µm in aerodynamic diameter) within the Columbia Plateau region of the Pacific Northwest US is largely caused by wind erosion of agricultural lands managed in a winter wheat,summer fallow rotation. Land management practices, therefore, are sought that will reduce erosion and PM10 emissions during the summer fallow phase of the rotation. Horizontal soil flux and PM10 concentrations above adjacent field plots (>2 ha), with plots subject to conventional or undercutter tillage during summer fallow, were measured using creep and saltation/suspension collectors and PM10 samplers installed at various heights above the soil surface. After wheat harvest in 2004 and 2005, the plots were either disked (conventional) or undercut with wide sweeps (undercutter) the following spring and then periodically rodweeded prior to sowing wheat in late summer. Soil erosion from the fallow plots was measured during six sampling periods over two years; erosion or PM10 loss was not observed during two periods due to the presence of a crust on the soil surface. For the remaining sampling periods, total surface soil loss from conventional and undercutter tillage ranged from 3 to 40 g m,2 and 1 to 27 g m,2 while PM10 loss from conventional and undercutter tillage ranged from 0·2 to 5·0 g m,2 and 0·1 to 3·3 g m,2, respectively. Undercutter tillage resulted in a 15% to 65% reduction in soil loss and 30% to 70% reduction in PM10 loss as compared with conventional tillage at our field sites. Therefore, based on our results at two sites over two years, undercutter tillage appears to be an effective management practice to reduce dust emissions from agricultural land subject to a winter wheat,summer fallow rotation within the Columbia Plateau. Copyright © 2009 John Wiley & Sons, Ltd. [source] ACE and angiotensinogen gene genotypes and left ventricular mass in athletesEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 10 2001F. Diet Background Genetic factors may be important in modifying heart size due to long-term athletic training. The significance of polymorphisms of genes of the renin,angiotensin system in myocardial mass in a population of athletes participating in different disciplines is not known. Methods The angiotensin I-converting enzyme gene insertion/deletion (I/D) polymorphism, angiotensinogen gene M235T polymorphism and angiotensin II type 1 receptor gene A1166C polymorphism were determined in 83 male Caucasian endurance athletes and associated with left ventricular mass. Results No association with left ventricular mass was found for the polymorphisms of angiotensin I-converting enzyme gene I/D, angiotensinogen gene M235T and angiotensin II type 1 gene A1166C when studied separately. However, combined analysis of the angiotensin I-converting enzyme gene I/D polymorphism and angiotensinogen gene M235T polymorphism genotypes suggested an association with left ventricular mass (g m,2) (P = 0·023). Athletes with the angiotensin I-converting enzyme gene DD/angiotensinogen gene TT genotype combination had greater left ventricular mass compared with all other genotype combinations (179·8 ± 26·1 g m,2 vs. 145·2 ± 27·3 g m,2, P = 0·003). Conclusions These results suggest an association of combined angiotensin I-converting enzyme gene I/D polymorphism genotypes, and angiotensinogen gene M235T polymorphism genotypes with left ventricular hypertrophy due to long-term athletic training. A synergistic effect of angiotensin I-converting enzyme gene DD genotype and angiotensinogen gene TT genotype on left ventricular mass in endurance athletes appears to occur. [source] Effects of increasing fire frequency on black carbon and organic matter in Podzols of Siberian Scots pine forestsEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2005C. I. Czimczik Summary Fires in boreal forests frequently convert organic matter in the organic layer to black carbon, but we know little of how changing fire frequency alters the amount, composition and distribution of black carbon and organic matter within soils, or affects podzolization. We compared black carbon and organic matter (organic carbon and nitrogen) in soils of three Siberian Scots pine forests with frequent, moderately frequent and infrequent fires. Black carbon did not significantly contribute to the storage of organic matter, most likely because it is consumed by intense fires. We found 99% of black carbon in the organic layer; maximum stocks were 72 g m,2. Less intense fires consumed only parts of the organic layer and converted some organic matter to black carbon (> 5 g m,2), whereas more intense fires consumed almost the entire organic layer. In the upper 0.25 m of the mineral soil, black carbon stocks were 0.1 g m,2 in the infrequent fire regime. After fire, organic carbon and nitrogen in the organic layer accumulated with an estimated rate of 14.4 g C m,2 year,1 or 0.241 g N m,2 year,1. Maximum stocks 140 years after fire were 2190 g organic C m,2 and 40 g N m,2, with no differences among fire regimes. With increasing fire frequency, stocks of organic carbon increased from 600 to 1100 g m,2 (0,0.25 m). Stocks of nitrogen in the mineral soil were similar among the regimes (0.04 g m,2). We found that greater intensities of fire reduce amounts of organic matter in the organic layer but that the greater frequencies may slightly increase amounts in the mineral soil. [source] The inherent ,safety-net' of an Acrisol: measuring and modelling retarded leaching of mineral nitrogenEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2002D. Suprayogo Summary The inherent features of Acrisols with their increasing clay content with depth are conducive to reducing nutrient losses by nutrient adsorption on the matrix soil surfaces. Ammonium (NH4+) and nitrate (NO3,) adsorption by a Plinthic Acrisol from Lampung, Indonesia was studied in column experiments. The peak of the H218O breakthrough occurred at 1 pore volume, whereas the median pore volumes for NH4+ and NO3, ranged from 6.4 to 6.9 and 1.1 to 1.6, respectively. The adsorption coefficients (Ka in cm3 g,1) measured were 1.81, 1.51, 1.64 and 1.47 for NH4+ and 0.03, 0.09, 0.10 and 0.17 for NO3,, respectively, in the 0,0.2, 0.2,0.4, 0.4,0.6 and 0.6,0.8 m soil depth layers. The NH4+ and NO3, adsorption coefficients derived from this study were put in to the Water, Nutrient and Light Capture in Agroforestry Systems (WaNuLCAS) model to evaluate their effect on leaching in the context of several cropping systems in the humid tropics. The resulting simulations indicate that the inherent ,safety-net' (retardation mechanism) of a shallow (0.8,1 m) Plinthic Acrisol can reduce the leaching of mineral N by between 5 and 33% (or up to 2.1 g m,2), mainly due to the NH4+ retardation factor, and that the effectiveness in reducing N leaching increases with increasing depth. However, the inherent ,safety-net' is useful only if deep-rooted plants can recover the N subsequently. [source] Ecological processes influencing mortality of juvenile pink salmon (Oncorhynchus gorbuscha) in Prince William Sound, AlaskaFISHERIES OCEANOGRAPHY, Issue 2001T. M. Willette Abstract Our collaborative work focused on understanding the system of mechanisms influencing the mortality of juvenile pink salmon (Oncorhynchus gorbuscha) in Prince William Sound, Alaska. Coordinated field studies, data analysis and numerical modelling projects were used to identify and explain the mechanisms and their roles in juvenile mortality. In particular, project studies addressed the identification of major fish and bird predators consuming juvenile salmon and the evaluation of three hypotheses linking these losses to (i) alternative prey for predators (prey-switching hypothesis); (ii) salmon foraging behaviour (refuge-dispersion hypothesis); and (iii) salmon size and growth (size-refuge hypothesis). Two facultative planktivorous fishes, Pacific herring (Clupea pallasi) and walleye pollock (Theragra chalcogramma), probably consumed the most juvenile pink salmon each year, although other gadids were also important. Our prey-switching hypothesis was supported by data indicating that herring and pollock switched to alternative nekton prey, including juvenile salmon, when the biomass of large copepods declined below about 0.2 g m,3. Model simulations were consistent with these findings, but simulations suggested that a June pteropod bloom also sheltered juvenile salmon from predation. Our refuge-dispersion hypothesis was supported by data indicating a five-fold increase in predation losses of juvenile salmon when salmon dispersed from nearshore habitats as the biomass of large copepods declined. Our size-refuge hypothesis was supported by data indicating that size- and growth-dependent vulnerabilities of salmon to predators were a function of predator and prey sizes and the timing of predation events. Our model simulations offered support for the efficacy of representing ecological processes affecting juvenile fishes as systems of coupled evolution equations representing both spatial distribution and physiological status. Simulations wherein model dimensionality was limited through construction of composite trophic groups reproduced the dominant patterns in salmon survival data. In our study, these composite trophic groups were six key zooplankton taxonomic groups, two categories of adult pelagic fishes, and from six to 12 groups for tagged hatchery-reared juvenile salmon. Model simulations also suggested the importance of salmon density and predator size as important factors modifying the predation process. [source] Similar breakdown rates and benthic macroinvertebrate assemblages on native and Eucalyptus globulus leaf litter in Californian streamsFRESHWATER BIOLOGY, Issue 4 2010IGOR LA Summary 1.,Eucalyptus globulus, a tree species planted worldwide in many riparian zones, has been reported to affect benthic macroinvertebrates negatively. Although there is no consensus about the effects of Eucalyptus on aquatic macrobenthos, its removal is sometimes proposed as a means of ecological restoration. 2.,We combined the sampling of macroinvertebrates with measurement of the colonisation of leaf packs in mesh bags, to examine the effects of riparian Eucalyptus and its litter on benthic macroinvertebrates in three small streams in California, U.S.A. Each stream included one reach bordered by Eucalyptus (E-site) and a second bordered by native vegetation (N-site). 3.,The macrobenthos was sampled and two sets of litter bags were deployed at each site: one set with Eucalyptus litter (Euc-bags) and one with mixed native tree litter (Nat-bags) containing Quercus, Umbellularia, Acer and Alnus. Bags were exposed for 28, 56 and 90 days and this experiment was repeated in the autumn, winter and spring to account for effects of changing stream flow and insect phenology. 4.,Litter input (average dry mass: 950 g m,2 year,1 in E-sites versus 669 g m,2 year,1 in N-sites) was similar, although in-stream litter composition differed between E- and N-sites. Litter broke down at similar rates in Euc-bags and Nat-bags (0.0193 day,1 versus 0.0134 day,1), perhaps reflecting the refractory nature of some of the leaves of the native trees (Quercus agrifolia). 5.,Summary metrics for macroinvertebrates (taxon richness, Shannon diversity, pollution tolerance index) did not differ significantly between the E and N sites, or between Euc-bags and Nat-bags. No effect of exposure time or site was detected by ordination of the taxa sampled. However, distinct seasonal ordination clusters were observed in winter, spring and autumn, and one of the three streams formed a separate cluster. 6.,The presence of Eucalyptus was less important in explaining the taxonomic composition of the macrobenthos than either ,season' or ,stream'. Similarly, these same two factors (but not litter species) also helped explain the variation in leaf breakdown. We conclude that patches of riparian Eucalyptus and its litter have little effect on stream macrobenthos in this region. [source] Respiration and annual fungal production associated with decomposing leaf litter in two streamsFRESHWATER BIOLOGY, Issue 9 2004M. D. Carter Summary 1. We compared fungal biomass, production and microbial respiration associated with decomposing leaves in one softwater stream (Payne Creek) and one hardwater stream (Lindsey Spring Branch). 2. Both streams received similar annual leaf litter fall (478,492 g m,2), but Lindsey Spring Branch had higher average monthly standing crop of leaf litter (69 ± 24 g m,2; mean ± SE) than Payne Creek (39 ± 9 g m,2). 3. Leaves sampled from Lindsey Spring Branch contained a higher mean concentration of fungal biomass (71 ± 11 mg g,1) than those from Payne Creek (54 ± 8 mg g,1). Maximum spore concentrations in the water of Lindsay Spring Branch were also higher than those in Payne Creek. These results agreed with litterbag studies of red maple (Acer rubrum) leaves, which decomposed faster (decay rate of 0.014 versus 0.004 day,1), exhibited higher maximum fungal biomass and had higher rates of fungal sporulation in Lindsey Spring Branch than in Payne Creek. 4. Rates of fungal production and respiration per g leaf were similar in the two streams, although rates of fungal production and respiration per square metre were higher in Lindsey Spring Branch than in Payne Creek because of the differences in leaf litter standing crop. 5. Annual fungal production was 16 ± 6 g m,2 (mean ± 95% CI) in Payne Creek and 46 ± 25 g m,2 in Lindsey Spring Branch. Measurements were taken through the autumn of 2 years to obtain an indication of inter-year variability. Fungal production during October to January of the 2 years varied between 3 and 6 g m,2 in Payne Creek and 7,27 g m,2 in Lindsey Spring Branch. 6. Partial organic matter budgets constructed for both streams indicated that 3 ± 1% of leaf litter fall went into fungal production and 7 ± 2% was lost as respiration in Payne Creek. In Lindsey Spring Branch, fungal production accounted for 10 ± 5% of leaf litter fall and microbial respiration for 13 ± 9%. [source] Inflorescence characteristics, seed composition, and allometric relationships predicting seed yields in the biomass crop Cynara cardunculusGCB BIOENERGY, Issue 3 2010S. V. ARCHONTOULIS Abstract Cynara (Cynara cardunculus) is a perennial C3 herb that has its potential as bioenergy crop. This paper aims (a) to derive empirical relationships to predict cynara seed yield per head and per unit area, avoiding laborious extraction of seeds from the complex structure of its inflorescences; (b) to determine the head-weight distribution per unit area, the seed composition and the oil profile of cynara seeds; and (c) to estimate the range of cynara biomass, seed and oil yield in representative parts of Greece. We analyzed 16 field experiments, varying in crop age and environmental conditions in Greece. Seed yield per head (SYhead) can be accurately predicted as a linear function of dry head weight (Hw): SYhead=0.429·Hw,2.9 (r2=0.96; n=617). Based on this relationship, we developed a simple two-parameter equation to predict seed yield per unit area (SY): SY=HN·(0.429·,,2.9), where , is the mean head weight (g head,1) and HN is the total number of heads per unit area, respectively. The models were tested against current and published data (n=180 for head-level; n=35 for unit area-level models), and proved to be valid under diverse management and environmental conditions. Attainable cynara seed yields ranged from 190 to 480 g m,2 yr,1, on dry soils and on aquic soils (shallow ground water level). This variation in seed yield was sufficiently explained by the analyses of head-weight distribution per unit area (small, medium and large heads) and variability of seed/head weight ratio at head level. Seed oil concentration (average: 23%) and crude protein concentration (average: 18.7%) were rather invariant across different seed sizes (range: 26,56 mg seed,1) and growing environments. [source] Shrub expansion stimulates soil C and N storage along a coastal soil chronosequenceGLOBAL CHANGE BIOLOGY, Issue 7 2010STEVEN T. BRANTLEY Abstract Expansion of woody vegetation in grasslands is a worldwide phenomenon with implications for C and N cycling at local, regional and global scales. Although woody encroachment is often accompanied by increased annual net primary production (ANPP) and increased inputs of litter, mesic ecosystems may become sources for C after woody encroachment because stimulation of soil CO2 efflux releases stored soil carbon. Our objective was to determine if young, sandy soils on a barrier island became a sink for C after encroachment of the nitrogen-fixing shrub Morella cerifera, or if associated stimulation of soil CO2 efflux mitigated increased litterfall. We monitored variations in litterfall in shrub thickets across a chronosequence of shrub expansion and compared those data to previous measurements of ANPP in adjacent grasslands. In the final year, we quantified standing litter C and N pools in shrub thickets and soil organic matter (SOM), soil organic carbon (SOC), soil total nitrogen (TN) and soil CO2 efflux in shrub thickets and adjacent grasslands. Heavy litterfall resulted in a dense litter layer storing an average of 809 g C m,2 and 36 g N m,2. Although soil CO2 efflux was stimulated by shrub encroachment in younger soils, soil CO2 efflux did not vary between shrub thickets and grasslands in the oldest soils and increases in CO2 efflux in shrub thickets did not offset contributions of increased litterfall to SOC. SOC was 3.6,9.8 times higher beneath shrub thickets than in grassland soils and soil TN was 2.5,7.7 times higher under shrub thickets. Accumulation rates of soil and litter C were highest in the youngest thicket at 101 g m,2 yr,1 and declined with increasing thicket age. Expansion of shrubs on barrier islands, which have low levels of soil carbon and high potential for ANPP, has the potential to significantly increase ecosystem C sequestration. [source] The European carbon balance.GLOBAL CHANGE BIOLOGY, Issue 5 2010Part 2: croplands Abstract We estimated the long-term carbon balance [net biome production (NBP)] of European (EU-25) croplands and its component fluxes, over the last two decades. Net primary production (NPP) estimates, from different data sources ranged between 490 and 846 gC m,2 yr,1, and mostly reflect uncertainties in allocation, and in cropland area when using yield statistics. Inventories of soil C change over arable lands may be the most reliable source of information on NBP, but inventories lack full and harmonized coverage of EU-25. From a compilation of inventories we infer a mean loss of soil C amounting to 17 g m,2 yr,1. In addition, three process-based models, driven by historical climate and evolving agricultural technology, estimate a small sink of 15 g C m,2 yr,1 or a small source of 7.6 g C m,2 yr,1. Neither the soil C inventory data, nor the process model results support the previous European-scale NBP estimate by Janssens and colleagues of a large soil C loss of 90 ± 50 gC m,2 yr,1. Discrepancy between measured and modeled NBP is caused by erosion which is not inventoried, and the burning of harvest residues which is not modeled. When correcting the inventory NBP for the erosion flux, and the modeled NBP for agricultural fire losses, the discrepancy is reduced, and cropland NBP ranges between ,8.3 ± 13 and ,13 ± 33 g C m,2 yr,1 from the mean of the models and inventories, respectively. The mean nitrous oxide (N2O) flux estimates ranges between 32 and 37 g C Eq m,2 yr,1, which nearly doubles the CO2 losses. European croplands act as small CH4 sink of 3.3 g C Eq m,2 yr,1. Considering ecosystem CO2, N2O and CH4 fluxes provides for the net greenhouse gas balance a net source of 42,47 g C Eq m,2 yr,1. Intensifying agriculture in Eastern Europe to the same level Western Europe amounts is expected to result in a near doubling of the N2O emissions in Eastern Europe. N2O emissions will then become the main source of concern for the impact of European agriculture on climate. [source] Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in Northern SiberiaGLOBAL CHANGE BIOLOGY, Issue 6 2008GEORG GUGGENBERGER Abstract Boreal permafrost soils store large amounts of organic carbon (OC). Parts of this carbon (C) might be black carbon (BC) generated during vegetation fires. Rising temperature and permafrost degradation is expected to have different consequences for OC and BC, because BC is considered to be a refractory subfraction of soil organic matter. To get some insight into stocks, variability, and characteristics of BC in permafrost soils, we estimated the benzene polycarboxylic acid (BPCA) method-specific composition and storage of BC, i.e. BPCA-BC, in a 0.44 km2 -sized catchment at the forest tundra ecotone in northern Siberia. Furthermore, we assessed the BPCA-BC export with the stream draining the catchment. The catchment is composed of various landscape units with south-southwest (SSW) exposed mineral soils characterized by thick active layer or lacking permafrost, north-northeast (NNE) faced mineral soils with thin active layer, and permafrost-affected raised bogs in plateau positions showing in part thermokarst formation. There were indications of vegetation fires at all landscape units. BC was ubiquitous in the catchment soils and BPCA-BC amounted to 0.6,3.0% of OC. This corresponded to a BC storage of 22,3440 g m,2. The relative contribution of BPCA-BC to OC, as well as the absolute stocks of BPCA-BC were largest in the intact bogs with a shallow active layer followed by mineral soils of the NNE aspects. In both landscape units, a large proportion of BPCA-BC was stored within the permafrost. In contrast, mineral soils with thick active layer or lacking permafrost and organic soils subjected to thermokarst formation stored less BPCA-BC. Permafrost is, hence, not only a crucial factor in the storage of OC but also of BC. In the stream water BPCA-BC amounted on an average to 3.9% of OC, and a yearly export of 0.10 g BPCA-BC m,2 was calculated, most of it occurring during the period of snow melt with dominance of surface flow. This suggests that BC mobility in dissolved and colloidal phase is an important pathway of BC export from the catchment. Such a transport mechanism may explain the high BC concentrations found in sediments of the Arctic Ocean. [source] Fine root dynamics in a loblolly pine forest are influenced by free-air-CO2 -enrichment: a six-year-minirhizotron studyGLOBAL CHANGE BIOLOGY, Issue 3 2008SETH G. PRITCHARD Abstract Efforts to characterize carbon (C) cycling among atmosphere, forest canopy, and soil C pools are hindered by poorly quantified fine root dynamics. We characterized the influence of free-air-CO2 -enrichment (ambient +200 ppm) on fine roots for a period of 6 years (Autumn 1998 through Autumn 2004) in an 18-year-old loblolly pine (Pinus taeda) plantation near Durham, NC, USA using minirhizotrons. Root production and mortality were synchronous processes that peaked most years during spring and early summer. Seasonality of fine root production and mortality was not influenced by atmospheric CO2 availability. Averaged over all 6 years of the study, CO2 enrichment increased average fine root standing crop (+23%), annual root length production (+25%), and annual root length mortality (+36%). Larger increase in mortality compared with production with CO2 enrichment is explained by shorter average fine root lifespans in elevated plots (500 days) compared with controls (574 days). The effects of CO2 -enrichment on fine root proliferation tended to shift from shallow (0,15 cm) to deeper soil depths (15,30) with increasing duration of the study. Diameters of fine roots were initially increased by CO2 -enrichment but this effect diminished over time. Averaged over 6 years, annual fine root NPP was estimated to be 163 g dw m,2 yr,1 in CO2 -enriched plots and 130 g dw m,2 yr,1 in control plots (P= 0.13) corresponding to an average annual additional input of fine root biomass to soil of 33 g m,2 yr,1 in CO2 -enriched plots. A lack of consistent CO2× year effects suggest that the positive effects of CO2 enrichment on fine root growth persisted 6 years following minirhizotron tube installation (8 years following initiation of the CO2 fumigation). Although CO2 -enrichment contributed to extra flow of C into soil in this experiment, the magnitude of the effect was small suggesting only modest potential for fine root processes to directly contribute to soil C storage in south-eastern pine forests. [source] Long-term carbon exchange in a sparse, seasonally dry tussock grasslandGLOBAL CHANGE BIOLOGY, Issue 10 2004John E. Hunt Abstract Rainfall and its seasonal distribution can alter carbon dioxide (CO2) exchange and the sustainability of grassland ecosystems. Using eddy covariance, CO2 exchange between the atmosphere and a sparse grassland was measured for 2 years at Twizel, New Zealand. The years had contrasting distributions of rain and falls (446 mm followed by 933 mm; long-term mean=646 mm). The vegetation was sparse with total above-ground biomass of only 1410 g m,2. During the dry year, leaf area index peaked in spring (November) at 0.7, but it was <0.2 by early summer. The maximum daily net CO2 uptake rate was only 1.5 g C m,2 day,1, and it occurred before mid-summer in both years. On an annual basis, for the dry year, 9 g C m,2 was lost to the atmosphere. During the wet year, 41 g C m,2 was sequestered from the atmosphere. The net exchange rates were determined mostly by the timing and intensity of spring rainfall. The components of ecosystem respiration were measured using chambers. Combining scaled-up measurements with the eddy CO2 effluxes, it was estimated that 85% of ecosystem respiration emanated from the soil surface. Under well-watered conditions, 26% of the soil surface CO2 efflux came from soil microbial activity. Rates of soil microbial CO2 production and net mineral-N production were low and indicative of substrate limitation. Soil respiration declined by a factor of four as the soil water content declined from field capacity (0.21 m3 m,3) to the driest value obtained (0.04 m3 m,3). Rainfall after periods of drought resulted in large, but short-lived, respiration pulses that were curvilinearly related to the increase in root-zone water content. Coupled with the low leaf area and high root : shoot ratio, this sparse grassland had a limited capacity to sequester and store carbon. Assuming a proportionality between carbon gain and rainfall during the summer, rainfall distribution statistics suggest that the ecosystem is sustainable in the long term. [source] Ten years of free-air CO2 enrichment altered the mobilization of N from soil in Lolium perenne L. swardsGLOBAL CHANGE BIOLOGY, Issue 8 2004Manuel K. Schneider Abstract Effects of free-air carbon dioxide enrichment (FACE, 60 Pa pCO2) on plant growth as compared with ambient pCO2 (36 Pa) were studied in swards of Lolium perenne L. (perennial ryegrass) at two levels of N fertilization (14 and 56 g m,2 a,1) from 1993 to 2002. The objectives were to determine how plant growth responded to the availability of C and N in the long term and how the supply of N to the plant from the two sources of N in the soil, soil organic matter (SOM) and mineral fertilizer, varied over time. In three field experiments, 15N-labelled fertilizer was used to distinguish the sources of available N. In 1993, harvestable biomass under elevated pCO2 was 7% higher than under ambient pCO2. This relative pCO2 response increased to 32% in 2002 at high N, but remained low at low N. Between 1993 and 2002, the proportions and amounts of N in harvestable biomass derived from SOM (excluding remobilized fertilizer) were, at high N, increasingly higher at elevated pCO2 than at ambient pCO2. Two factorial experiments confirmed that at high N, but not at low N, a higher proportion of N in harvestable biomass was derived from soil (including remobilized fertilizer) following 7 and 9 years of elevated pCO2, when compared with ambient pCO2. It is suggested that N availability in the soil initially limited the pCO2 response of harvestable biomass. At high N, the limitation of plant growth decreased over time as a result of the stimulated mobilization of N from soil, especially from SOM. Consequently, harvestable biomass increasingly responded to elevated pCO2. The underlying mechanisms which contributed to the increased mobilization of N from SOM under elevated pCO2 are discussed. This study demonstrated that there are feedback mechanisms in the soil which are only revealed during long-term field experiments. Such investigations are thus, a prerequisite for understanding the responses of ecosystems to elevated pCO2 and N supply. [source] The contribution of bryophytes to the carbon exchange for a temperate rainforestGLOBAL CHANGE BIOLOGY, Issue 8 2003Evan H. DeLucia Abstract Bryophytes blanket the floor of temperate rainforests in New Zealand and may influence a number of important ecosystem processes, including carbon cycling. Their contribution to forest floor carbon exchange was determined in a mature, undisturbed podocarp-broadleaved forest in New Zealand, dominated by 100,400-year-old rimu (Dacrydium cupressimum) trees. Eight species of mosses and 13 species of liverworts contributed to the 62% cover of the diverse forest floor community. The bryophyte community developed a relatively thin (depth <30 mm), but dense, canopy that experienced elevated CO2 partial pressures (median 46.6 Pa immediately below the bryophyte canopy) relative to the surrounding air (median 37.6 Pa at 100 mm above the canopy). Light-saturated rates of net CO2 exchange from 14 microcosms collected from the forest floor were highly variable; the maximum rate of net uptake (bryophyte photosynthesis , whole-plant respiration) per unit ground area at saturating irradiance was 1.9 ,mol m,2 s,1 and in one microcosm, the net rate of CO2 exchange was negative (respiration). CO2 exchange for all microcosms was strongly dependent on water content. The average water content in the microcosms ranged from 1375% when fully saturated to 250% when air-dried. Reduction in water content across this range resulted in an average decrease of 85% in net CO2 uptake per unit ground area. The results from the microcosms were used in a model to estimate annual carbon exchange for the forest floor. This model incorporated hourly variability in average irradiance reaching the forest floor, water content of the bryophyte layer, and air and soil temperature. The annual net carbon uptake by forest floor bryophytes was 103 g m,2, compared to annual carbon efflux from the forest floor (bryophyte and soil respiration) of ,1010 g m,2. To put this in perspective of the magnitude of the components of CO2 exchange for the forest floor, the bryophyte layer reclaimed an amount of CO2 equivalent to only about 10% of forest floor respiration (bryophyte plus soil) or ,11% of soil respiration. The contribution of forest floor bryophytes to productivity in this temperate rainforest was much smaller than in boreal forests, possibly because of differences in species composition and environmental limitations to photosynthesis. Because of their close dependence on water table depth, the contribution of the bryophyte community to ecosystem CO2 exchange may be highly responsive to rapid changes in climate. [source] Floristic composition and plant biomass production of steppe communities in the vicinity of Kharkiv, UkraineGRASSLAND SCIENCE, Issue 3 2005Kiyokazu Kawada Abstract In grassland in the vicinity of Kharkiv, Ukraine, we determined the floristic composition of the plant communities, v -values of the species and above-ground plant biomass. The plant communities in Kharkiv were dominated by Stipa capillata L., Medicago romanica Prodan, Inula ensifolia L. and Poa angustifolia L. There were 46 species in eight 1-m2 quadrates and the above-ground plant biomass was 245 g m,2 in the Stipa capillata stand. In the Medicago romanica stand, the number of species and above-ground plant biomass were 37 per 10 quadrates of 1 m2 and 195 g m,2, respectively. The numbers of species in the stands were 40 in Poa angustifolia and 45 in Inula ensifolia. The plant biomass of the Poa angustifoia stand was 380 g m,2. These values were similar to those from Inner Mongolia. The species diversity of the stand (H) was calculated as: H = ,,pi log2 pi. The species diversity of the two stands was 2.98 for the Stipa capillata stand and 2.66 in the Medicago romanica stand. The stand changed by various human impacts, such as grazing and cultivation. Plantago schwarzenbergiana Schur. seemed to become established after the exposure of Stipa capillata stands to grazing, while Inula ensifolia stands became established in an abandoned field. The species composition in Kharkiv was different from that of Inner Mongolia, though the genus of plants was similar. [source] Fire effects on rangeland hydrology and erosion in a steep sagebrush-dominated landscape,HYDROLOGICAL PROCESSES, Issue 16 2008Frederick B. Pierson Abstract Post-fire runoff and erosion from wildlands has been well researched, but few studies have researched the degree of control exerted by fire on rangeland hydrology and erosion processes. Furthermore, the spatial continuity and temporal persistence of wildfire impacts on rangeland hydrology and erosion are not well understood. Small-plot rainfall and concentrated flow simulations were applied to unburned and severely burned hillslopes to determine the spatial continuity and persistence of fire-induced impacts on runoff and erosion by interrill and rill processes on steep sagebrush-dominated sites. Runoff and erosion were measured immediately following and each of 3 years post-wildfire. Spatial and temporal variability in post-fire hydrologic and erosional responses were compared with runoff and erosion measured under unburned conditions. Results from interrill simulations indicate fire-induced impacts were predominantly on coppice microsites and that fire influenced interrill sediment yield more than runoff. Interrill runoff was nearly unchanged by burning, but 3-year cumulative interrill sediment yield on burned hillslopes (50 g m,2) was twice that of unburned hillslopes (25 g m,2). The greatest impact of fire was on the dynamics of runoff once overland flow began. Reduced ground cover on burned hillslopes allowed overland flow to concentrate into rills. The 3-year cumulative runoff from concentrated flow simulations on burned hillslopes (298 l) was nearly 20 times that measured on unburned hillslopes (16 l). The 3-year cumulative sediment yield from concentrated flow on burned and unburned hillslopes was 20 400 g m,2 and 6 g m,2 respectively. Fire effects on runoff generation and sediment were greatly reduced, but remained, 3 years post-fire. The results indicate that the impacts of fire on runoff and erosion from severely burned steep sagebrush landscapes vary significantly by microsite and process, exhibiting seasonal fluctuation in degree, and that fire-induced increases in runoff and erosion may require more than 3 years to return to background levels. Published in 2008 by John Wiley & Sons, Ltd. [source] Influences of grass and moss on runoff and sediment yield on sloped loess surfaces under simulated rainfallHYDROLOGICAL PROCESSES, Issue 18 2006Chengzhong Pan Abstract It is important to evaluate the impacts of grasses on soil erosion process so as to use them effectively to control soil and water losses on the Loess Plateau. Laboratory-simulated rainfall experiments were conducted to investigate the runoff and sediment processes on sloped loess surfaces with and without the aboveground parts of grasses and moss (GAM: grass and moss; NGAM: no grass and moss) under slope gradients of 5°, 10°, 15°, 20°, 25° and 30°. The results show that runoff from GAM and NGAM plots increased up to a slope gradient of 10° and decreased thereafter, whereas the runoff coefficients increased with gradient. The average runoff rates and runoff coefficients of NGAM plots were less than those of GAM plots except for the 5° slope. This behaviour may be due to the reduction in water infiltration under moss. The difference between GAM and NGAM plots in average runoff rates varied from 1·4 to 8%. At the same gradients, NGAM plots yielded significantly (, = 0·05) more sediment than GAM plots. Average sediment deliveries for different slopes varied from 0·119 to 3·794 g m,2 min,1 from GAM plots, and from 0·765 to 16·128 g m,2 min,1 from NGAM plots. Sediment yields from GAM plots were reduced by 45 to 85%, compared with those from the NGAM plots. Plots at 30° yielded significantly higher sediments than at the other gradients. Total sediments S increased with slope gradients G in a linear form, i.e. S = 9·25G , 39·6 with R2 = 0·77*, for the GAM plots, and in an exponential model, i.e. S = 40·4 exp(0·1042G) with R2 = 0·93**, for the NGAM plots. In all cases, sediment deliveries decreased with time, and reached a relative steady state at a rainfall duration of 14 min. Compared with NGAM plots, the final percentage reductions in sediment delivery from GAM plots were higher than those at the initial time of rainfall at all slopes. Copyright © 2006 John Wiley & Sons, Ltd. [source] Hydrological and erosional response to natural rainfall in a semi-arid area of south-east SpainHYDROLOGICAL PROCESSES, Issue 4 2001M. Martinez-Mena Abstract A better knowledge of soil erosion by water is essential for planning effective soil and water conservation practices in semi-arid Mediterranean environments. The special climatic and hydrological characteristics of these areas, however, make accurate soil loss predictions difficult, particularly in the absence of minimal data. Two zero-order experimental microcatchments (328,759 m2), representative of an extensive semi-arid watershed with a high potential erosion risk in the south-east of Spain, were selected and monitored for 3 years (1991,93) in order to provide information on the hydrological and erosional response. A pluviogram and hydrograph recorded data at 1-min intervals during each storm, after which the soil loss was collected and the particle size of the sediment was analysed. Runoff coefficients of about 9% and soil losses of between 84·83 and 298·9 g m,2 year,1 were observed in the area. Rapid response times (geometric mean values lower than 2 h) and low runoff thresholds (mean values between 3·5 to 5·9 mm) were the norm in the experimental areas. A rain intensity of over 15 mm h,1 was considered as ,erosive rainfall' in these areas because of the total soil loss and the transport capacity of the overland flow. Differences in pore-size distribution explained the different hydrological responses observed between areas. The erosional response was more complex and basically seemed to be determined by soil aggregate stability and topographical properties. A greater proportion of finer particles in the eroded material than in the soil matrix indicated selective erosion and the transport of finer material. Copyright © 2001 John Wiley & Sons, Ltd. [source] Effectiveness of ozone against endodontopathogenic microorganisms in a root canal biofilm modelINTERNATIONAL ENDODONTIC JOURNAL, Issue 1 2009K. C. Huth Abstract Aim, To assess the antimicrobial efficacy of aqueous (1.25,20 ,g mL,1) and gaseous ozone (1,53 g m,3) as an alternative antiseptic against endodontic pathogens in suspension and a biofilm model. Methodology,Enterococcus faecalis, Candida albicans, Peptostreptococcus micros and Pseudomonas aeruginosa were grown in planctonic culture or in mono-species biofilms in root canals for 3 weeks. Cultures were exposed to ozone, sodium hypochlorite (NaOCl; 5.25%, 2.25%), chlorhexidine digluconate (CHX; 2%), hydrogen peroxide (H2O2; 3%) and phosphate buffered saline (control) for 1 min and the remaining colony forming units counted. Ozone gas was applied to the biofilms in two experimental settings, resembling canal areas either difficult (setting 1) or easy (setting 2) to reach. Time-course experiments up to 10 min were included. To compare the tested samples, data were analysed by one-way anova. Results, Concentrations of gaseous ozone down to 1 g m,3 almost and aqueous ozone down to 5 ,g mL,1 completely eliminated the suspended microorganisms as did NaOCl and CHX. Hydrogen peroxide and lower aqueous ozone concentrations were less effective. Aqueous and gaseous ozone were dose- and strain-dependently effective against the biofilm microorganisms. Total elimination was achieved by high-concentrated ozone gas (setting 2) and by NaOCl after 1 min or a lower gas concentration (4 g m,3) after at least 2.5 min. High-concentrated aqueous ozone (20 ,g mL,1) and CHX almost completely eliminated the biofilm cells, whilst H2O2 was less effective. Conclusion, High-concentrated gaseous and aqueous ozone was dose-, strain- and time-dependently effective against the tested microorganisms in suspension and the biofilm test model. [source] Long time investigation of the effect of fouling on the super-heaters in a circulating fluidized biomass boilerINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 13 2006Jan Sandberg Abstract The present investigation involves measurements and theories on the mechanisms of the forming of deposit layers on super-heater tubes in a biomass-fired CFD boiler. The deposit layer thickness and the soot-blowing frequency effect on the super-heaters heat transfer are the main subject of the study that has been conducted over a 3-year period. The measurements show a deposit growth rate on the super-heaters of approximately 4 g m,2 h,1. The distribution of the deposit material varies significantly between the windward and the leeward side of the tubes, with the thickest layers on the windward side. Further down stream of the first super-heater, the fouling problem on the super-heater and re-heater tubes are not so severe. A theoretical model shows that a deposit layer of 20 mm will decrease the heat transfer rate of the first super-heater by nearly 40%. The soot-blowing system shows a strong positive effect on the heat transfer rate of the super-heater a few hours after a soot-blowing sequence has been completed. However in the long run, the varied soot-blowing frequency does not have a significant influence on the deposit layer growth rate. Copyright © 2006 John Wiley & Sons, Ltd. [source] Excessive Phosphorus Loading to Dal Lake, India: Implications for Managing Shallow Eutrophic Lakes in Urbanized WatershedsINTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 2 2008Sabah Ul Solim Abstract Extensive watershed development has resulted in excessive total phosphorus (TP) loads to Dal Lake, a high altitude Himalayan lake known for its tourism and economic potential. External and internal TP loads of 5 and ,1 g m,2 yr,1, respectively, were estimated for the lake. These loading rates are high in relation to the lake's critical tolerance range of 0.1,0.2 g m,2 yr,1, and, over time, have resulted in severe eutrophication in view of extremely high macrophyte biomass (average = 3.2 kg m,2 -fresh weight) and bottom sediment enrichment (79 tons of TP reserves which contribute 88% of the annual TP budget). This study emphasizes the importance of external TP load reduction as a primary management objective to counteract internal TP loading and P storage within bottom sediments resulting from historic anthropogenic loads. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Secondary Production and Its Trophic Basis of Two Mayfly Species in a Subtropical Stream of ChinaINTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 2 2006Yunjun Yan Abstract During June 2003 to June 2004, an investigation on life cycle, production and trophic basis of two species of mayfly in a second-order river of Hanjiang River Basin, Hubei, China was conducted. The results showed Epeorus sinensisUmler and Caenis nigropunctataWu both developed two generations a year. The mean annual production and P/B ratio of E. sinensis were 9.154 g m,2 a,1 dry weight and 16.0, and those of C. nigropunctata were 1.554 g m,2 a,1 and 9.6, respectively. For E. sinensis , the proportions contributing to secondary production of the main food types were: amorphous detritus 33.46%, fungi 10.8%, vascular plant detritus 1.8%, diatoms 53.9%; for C.nigropunctata , the proportions were 70.8%, 6.90%, 3.5% and 18.8%, respectively. Compared with those species reported in North America and Europe, although land use mode and local climate were greatly different in China, life history and trophic basis of the mayflies seemed roughly similar, yet secondary production appeared to be much higher. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Effect of Timing and Nitrogen Fertilizer Application on Winter Oilseed Rape (Brassica napus L.). I. Growth Dynamics and Seed YieldJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 5 2004P. Bar Abstract The field experiments conducted on the grey-brown podzolic soil in the four growing seasons (1998,2001) at Krzeslice Farm, central-western Poland comprised seven fertilization variants: 80NF + 80CAN; 80CAN + 80CAN; 80AN + 80AN; 80NF + 50CAN + 30CN; 80CAN + 50CAN +30CN; 80AN + 50AN + 30CN (where NF , nitrofos NPK; CAN , calcium-ammonium nitrate; AN , ammonium nitrate; CN , calcium nitrate) and control (without N) applied in split rates at the beginning of spring regrowth (80 kg N ha,1), stem elongation (80 or 50) and flower buds visible stages (30). The yielding effect of tested fertilization variants was significant in comparison with the control (2.24 t ha,1). The highest mean seed yield (3.64 t ha,1) was collected from 80AN + 80AN and 80CAN + 80CAN variants. Mean values of 4 years indicate that the second N rate division (80 + 50 + 30) decreased yield, although not significantly in comparison with these two N treatments. Plants grown on these treatments have developed different patterns of growth to yield the seeds. These patterns were characterized by very high crop growth rate during flowering (above 21 g m,2 day,1) and negative at maturation (down to ,2.5 g m,2 day,1). Plants fertilized with ammonium nitrate (80AN + 80AN) reached maximum growth rate earlier (65 days), which lasted longer (20 days) than plants fertilized with calcium-ammonium nitrate (71 days lasting 17.5 days). Plants grown on the control treatment reached the highest crop growth rate within 79 days (14.8 g m,2 day,1), which lasted 15 days. [source] Ungulate foraging strategies: energy maximizing or time minimizing?JOURNAL OF ANIMAL ECOLOGY, Issue 2 2001Carita M. Bergman Summary 1,Many classical models of ungulate foraging are premised on energy maximization, yet limited empirical evidence and untested currency assumptions make the choice of currency a non-trivial issue. The primary constraints on forage intake of ungulates are forage quality and availability. Using a model that incorporates these two constraints, we predicted the optimal biomass of forage patches for ungulate grazers using an energy maximizing vs. a time minimizing strategy. 2,We tested these predictions on wood bison (Bison bison athabascae Rhoads) grazing naturally occurring sedge (Carex atherodes Spreng). The digestive constraint was determined by a series of ad libitum feeding trials using sedge at different stages of growth. Sedge digestibility declined with biomass. Ad libitum intake of sedge by bison declined with sedge digestibility and thus decreased with sedge biomass. On the other hand, short-term sedge intake rates of wood bison increased with biomass. 3,Incorporation of these constraints resulted in the prediction that daily energy gain of bison should be maximized by grazing patches with a biomass of 10 g m,2, whereas a bison could minimize daily foraging time needed to fulfil its energy requirement by cropping patches with a biomass of 279 g m,2. 4,To test these quantitative predictions, we used a staggered mowing regime to convert even-aged stands of sedge to a mosaic of patches varying in quality and quantity. Observations of bison grazing these mosaics indicated that patches of biomass below 120 g m,2 were avoided, while patches of biomass 156 and 219 g m,2 were highly preferred, with the greatest preference for the latter. 5,These results indicate that bison were behaving as time minimizers rather than energy maximizers. Daily cropping times of free-ranging bison from the literature corroborate our results. [source] The responses of floodplain primary production to flood frequency and timingJOURNAL OF APPLIED ECOLOGY, Issue 1 2001A.I. Robertson Summary 1,River regulation and abstraction have dramatically altered the natural flow regime of many rivers world-wide, but experimental investigations of the biological effects are infrequent. In the mid-region of the Murray River, Australia, river regulation has reduced the frequency and duration of spring floods and increased the frequency of summer floods. We used controlled floods (treatments: no floods, spring floods, summer floods and spring + summer floods) to determine how the growth of river red gum Eucalyptus camaldulensis trees, aquatic macrophytes and biofilms varied with the seasonal timing and frequency of flooding. 2,After 6 years of controlled flooding, above-ground net production of wood by river red gum trees was equal and greatest in plots receiving spring + summer floods and summer floods (mean 496 g m,2 year,1). Production was significantly lower in plots receiving spring floods or no controlled floods, which had similar rates of production (mean 330 g m,2 year,1). 3,During 2 years of measurement in wetlands created by flooding, production and species richness of aquatic macrophyte were both greater in spring than in summer floods. The history of flood frequency at any experimental site did not affect macrophyte production or species richness. The aquatic macrophyte community in shallow regions of wetlands differed significantly with the seasonal timing of floods, but not flood frequency. 4,The accumulation of chlorophyll a and total mass of biofilm on wood surfaces in wetlands created by flooding were greater in spring (mean chlorophyll a, 0·88 µg cm,2; mean mass, 0·066 mg cm,2) than in summer floods (mean chlorophyll a, 0·09 µg cm,2; mean mass, 0·034 mg cm,2). The history of flood frequency at any experimental site did not affect accumulation of either the autotrophic or heterotrophic components of biofilms. 5,Spring flooding, while not as beneficial for tree growth, is critical for the growth of wetland macrophytes, the maintenance of macrophyte species richness, and favours better development of autotrophic biofilms. Maintenance of both the timber harvest and wetland conservation values of these floodplains will require the return of more natural flood flows in the spring period. Restoration of floodplain rivers requires a thorough understanding of the relationships between ecological functions and the natural flow regime. [source] Experimental and neural model analysis of styrene removal from polluted air in a biofilterJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 7 2009Eldon R. Rene Abstract BACKGROUND: Biofilters are efficient systems for treating malodorous emissions. The mechanism involved during pollutant transfer and subsequent biotransformation within a biofilm is a complex process. The use of artificial neural networks to model the performance of biofilters using easily measurable state variables appears to be an effective alternative to conventional phenomenological modelling. RESULTS: An artificial neural network model was used to predict the extent of styrene removal in a perlite-biofilter inoculated with a mixed microbial culture. After a 43 day biofilter acclimation period, styrene removal experiments were carried out by subjecting the bioreactor to different flow rates (0.15,0.9 m3 h,1) and concentrations (0.5,17.2 g m,3), that correspond to inlet loading rates up to 1390 g m,3 h,1. During the different phases of continuous biofilter operation, greater than 92% styrene removal was achievable for loading rates up to 250 g m,3 h,1. A back propagation neural network algorithm was applied to model and predict the removal efficiency (%) of this process using inlet concentration (g m,3) and unit flow (h,1) as input variables. The data points were divided into training (115 × 3) and testing set (42 × 3). The most reliable condition for the network was selected by a trial and error approach and by estimating the determination coefficient (R2) value (0.98) achieved during prediction of the testing set. CONCLUSION: The results showed that a simple neural network based model with a topology of 2,4,1 was able to efficiently predict the styrene removal performance in the biofilter. Through sensitivity analysis, the most influential input parameter affecting styrene removal was ascertained to be the flow rate. Copyright © 2009 Society of Chemical Industry [source] Comparison of chemical wet scrubbers and biofiltration for control of volatile organic compounds using GC/MS techniques and kinetic analysisJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 10 2005James R Kastner Abstract Increasing public concerns and EPA air regulations in non-attainment zones necessitate the remediation of volatile organic compounds (VOCs) generated in the poultry-rendering industry. Wet scrubbers using chlorine dioxide (ClO2) have low overall removal efficiencies due to lack of reactivity with aldehydes. Contrary to wet scrubbers, a biofilter system successfully treated the aldehyde fraction, based on GC/MS analysis of inlet and outlet streams. Total VOC removal efficiencies ranged from 40 to 100% for the biofilter, kinetic analysis indicated that the overall removal capacity approached 25 g m,3 h,1, and aldehyde removal efficiency was significantly higher compared with chemical wet scrubbers. Process temperatures monitored in critical unit operations upstream from the biofilter varied significantly during operation, rising as much as 30 °C within a few minutes. However, the outlet air temperature of a high intensity scrubber remained relatively constant at 40 °C, although the inlet air temperature fluctuated from 50 to 65 °C during monitoring. These data suggest a hybrid process combining a wet scrubber and biofilter in series could be used to improve overall VOC removal efficiencies and process stability. Copyright © 2005 Society of Chemical Industry [source] Photon flux partitioning among species along a productivity gradient of an herbaceous plant communityJOURNAL OF ECOLOGY, Issue 6 2006ANNE AAN Summary 1We studied light partitioning among species along the natural productivity gradient of herbaceous vegetation with an above-ground dry mass of 150,490 g m,2. The aim was to investigate how the light capturing ability per above-ground biomass and leaf nitrogen changes in an entire community and to reveal whether different species respond similarly to changes in soil conditions and competition. 2Species becoming dominant at high soil resources have intrinsically low leaf area ratios (LAR) and lower tissue nitrogen concentration, and hence relatively high nitrogen use efficiency. These traits lead to dominance when soil resources allow rapid growth so that benefits arising from the ability to locate leaves above neighbours and thereby increasing asymmetry of competition, become more crucial. 3In contrast to our expectations, above-ground efficiency of nitrogen use on the community level (aNUE) increased along the productivity gradient. Species level nitrogen use efficiency was unaffected by variation in site productivity; the increase in community aNUE was solely as a consequence of changes in species composition. 4Light absorption per unit of above-ground mass, ,M, declined significantly at the community level and also in most species, indicating that light use efficiency increased with increased site productivity and LAI. 5Light absorption per unit of leaf nitrogen, ,N, as an indicator of the ratio NUE/LUE showed no clear pattern on the community level because both NUE and LUE tend to increase with increased productivity. At the species level, ,N tends to decrease because NUE did not change with stand productivity. 6Some subordinate species responded by enlarging their LAR to increased competition. Additionally, these species were the most responsive in their leaf chlorophyll/nitrogen ratio to changes in light conditions, which shows that physiological plasticity is important for species that are unable to compete for light with the ability to position their leaves above those of other species. 7This study shows how plasticity in above-ground growth pattern and nitrogen allocation differs between species with respect to increased soil fertility and competition, leading to distinctive strategies of survival. Light partitioning analysis reveals that increased competition for light, resulting in changes in species composition, is the key factor that leads to decoupling of species and community level acclimation. [source] |