Home About us Contact | |||
CE/g Cellulose (g + cellulose)
Selected AbstractsSimultaneous Saccharification and Co-Fermentation of Crystalline Cellulose and Sugar Cane Bagasse Hemicellulose Hydrolysate to Lactate by a Thermotolerant Acidophilic Bacillus sp.BIOTECHNOLOGY PROGRESS, Issue 5 2005Milind A. Patel Polylactides produced from renewable feedstocks, such as corn starch, are being developed as alternatives to plastics derived from petroleum. In addition to corn, other less expensive biomass resources can be readily converted to component sugars (glucose, xylose, etc.) by enzyme and/or chemical treatment for fermentation to optically pure lactic acid to reduce the cost of lactic acid. Lactic acid bacteria used by the industry lack the ability to ferment pentoses (hemicellulose-derived xylose and arabinose), and their growth and fermentation optima also differ from the optimal conditions for the activity of fungal cellulases required for depolymerization of cellulose. To reduce the overall cost of simultaneous saccharification and fermentation (SSF) of cellulose, we have isolated bacterial biocatalysts that can grow and ferment all sugars in the biomass at conditions that are also optimal for fungal cellulases. SSF of Solka Floc cellulose by one such isolate, Bacillus sp. strain 36D1, yielded l(+)-lactic acid at an optical purity higher than 95% with cellulase (Spezyme CE; Genencor International) added at about 10 FPU/g cellulose, with a product yield of about 90% of the expected maximum. Volumetric productivity of SSF to lactic acid was optimal between culture pH values of 4.5 and 5.5 at 50 °C. At a constant pH of 5.0, volumetric productivity of lactic acid was maximal at 55 °C. Strain 36D1 also co-fermented cellulose-derived glucose and sugar cane bagasse hemicellulose-derived xylose simultaneously (SSCF). In a batch SSCF of 40% acid-treated hemicellulose hydrolysate (over-limed) and 20 g/L Solka Floc cellulose, strain 36D1 produced about 35 g/L lactic acid in about 144 h with 15 FPU of Spezyme CE/g cellulose. The maximum volumetric productivity of lactic acid in this SSCF was 6.7 mmol/L (h). Cellulose-derived lactic acid contributed to about 30% of this total lactic acid. These results show that Bacillus sp. strain 36D1 is well-suited for simultaneous saccharification and co-fermentation of all of the biomass-derived sugars to lactic acid. [source] Multicomponent cellulase production by Cellulomonas biazotea NCIM-2550 and its applications for cellulosic biohydrogen productionBIOTECHNOLOGY PROGRESS, Issue 2 2010Ganesh D. Saratale Abstract Among four cellulolytic microorganisms examined, Cellulomonas biazotea NCIM-2550 can grow on various cellulosic substrates and produce reducing sugar. The activity of cellulases (endoglucanase, exoglucanase, and cellobiase), xylanase, amylase, and lignin class of enzymes produced by C. biazotea was mainly present extracellularly and the enzyme production was dependent on cellulosic substrates (carboxymethyl cellulose [CMC], sugarcane bagasse [SCB], and xylan) used for growth. Effects of physicochemical conditions on cellulolytic enzyme production were systematically investigated. Using MnCl2 as a metal additive significantly induces the cellulase enzyme system, resulting in more reducing sugar production. The efficiency of fermentative conversion of the hydrolyzed SCB and xylan into clean H2 energy was examined with seven H2 -producing pure bacterial isolates. Only Clostridiumbutyricum CGS5 exhibited efficient H2 production performance with the hydrolysate of SCB and xylan. The cumulative H2 production and H2 yield from using bagasse hydrolysate (initial reducing sugar concentration = 1.545 g/L) were approximately 72.61 mL/L and 2.13 mmol H2/g reducing sugar (or 1.91 mmol H2/g cellulose), respectively. Using xylan hydrolysate (initial reducing sugar concentration = 0.345 g/L) as substrate could also attain a cumulative H2 production and H2 yield of 87.02 mL/L and 5.03 mmol H2/g reducing sugar (or 4.01 mmol H2/g cellulose), respectively. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source] Energy Transfer from Chemically Attached Rhodamine 101 to Adsorbed Methylene Blue on Microcrystalline Cellulose Particles,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2007Hernán B. Rodríguez Rhodamine 101 (R101) was chemically attached onto microcrystalline cellulose and methylene blue (MB) was adsorbed to a sample bearing nearby 6 × 10,7 mol R101 (g cellulose),1. The system was studied by reflectance and emission spectroscopy in the solid state. R101 shows no aggregation in these conditions and, while pure MB builds up dimers on cellulose even at 2 × 10,8 mol g,1, in the presence of R101 no evidence on selfaggregation or heteroaggregation is found up to around 10,6 mol g,1. No exciplex formation is found as well. The overall fluorescence quantum yield measured on thick layers, once re-absorption effects are accounted for, amounts to 0.80 ± 0.07 for pure R101 and decreases steadily on increasing the concentration of MB. Results demonstrate the occurrence of radiative and nonradiative singlet energy transfer from R101 to MB. For thick layers of particles, the combined effect of both kinds of energy transfer amounts to nearly 80% at the highest acceptor concentration, while nonradiative transfer reaches 60% both for thin and optically thick layers. The dependence of nonradiative energy transfer efficiencies on the acceptor concentration is analyzed and the origin of departures from Förster behavior at low acceptor concentration is discussed. [source] Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologiesBIOTECHNOLOGY PROGRESS, Issue 3 2009Rajeev Kumar Abstract Adsorption of cellulase on solids resulting from pretreatment of poplar wood by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid (DA), flowthrough (FT), lime, and sulfur dioxide (SO2) and pure Avicel glucan was measured at 4°C, as were adsorption and desorption of cellulase and adsorption of ,-glucosidase for lignin left after enzymatic digestion of the solids from these pretreatments. From this, Langmuir adsorption parameters, cellulose accessibility to cellulase, and the effectiveness of cellulase adsorbed on poplar solids were estimated, and the effect of delignification on cellulase effectiveness was determined. Furthermore, Avicel hydrolysis inhibition by enzymatic and acid lignin of poplar solids was studied. Flowthrough pretreated solids showed the highest maximum cellulase adsorption capacity (,solids = 195 mg/g solid) followed by dilute acid (,solids = 170.0 mg/g solid) and lime pretreated solids (,solids = 150.8 mg/g solid), whereas controlled pH pretreated solids had the lowest (,solids = 56 mg/g solid). Lime pretreated solids also had the highest cellulose accessibility (,cellulose = 241 mg/g cellulose) followed by FT and DA. AFEX lignin had the lowest cellulase adsorption capacity (,lignin = 57 mg/g lignin) followed by dilute acid lignin (,lignin = 74 mg/g lignin). AFEX lignin also had the lowest ,-glucosidase capacity (,lignin = 66.6 mg/g lignin), while lignin from SO2 (,lignin = 320 mg/g lignin) followed by dilute acid had the highest (301 mg/g lignin). Furthermore, SO2 followed by dilute acid pretreated solids gave the highest cellulase effectiveness, but delignification enhanced cellulase effectiveness more for high pH than low pH pretreatments, suggesting that lignin impedes access of enzymes to xylan more than to glucan, which in turn affects glucan accessibility. In addition, lignin from enzymatic digestion of AFEX and dilute acid pretreated solids inhibited Avicel hydrolysis less than ARP and flowthrough lignin, whereas acid lignin from unpretreated poplar inhibited enzymes the most. Irreversible binding of cellulase to lignin varied with pretreatment type and desorption method. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] |