G C M (g + c_m)

Distribution by Scientific Domains


Selected Abstracts


Soil CO2 flux and photoautotrophic community composition in high-elevation, ,barren' soil

ENVIRONMENTAL MICROBIOLOGY, Issue 3 2009
Kristen R. Freeman
Summary Soil-dominated ecosystems, with little or no plant cover (i.e. deserts, polar regions, high-elevation areas and zones of glacial retreat), are often described as ,barren', despite their potential to host photoautotrophic microbial communities. In high-elevation, subnival zone soil (i.e. elevations higher than the zone of continuous vegetation), the structure and function of these photoautotrophic microbial communities remains essentially unknown. We measured soil CO2 flux at three sites (above 3600 m) and used molecular techniques to determine the composition and distribution of soil photoautotrophs in the Colorado Front Range. Soil CO2 flux data from 2002 and 2007 indicate that light-driven CO2 uptake occurred on most dates. A diverse community of Cyanobacteria, Chloroflexi and eukaryotic algae was present in the top 2 cm of the soil, whereas these clades were nearly absent in deeper soils (2,4 cm). Cyanobacterial communities were composed of lineages most closely related to Microcoleus vaginatus and Phormidium murrayi, eukaryotic photoautotrophs were dominated by green algae, and three novel clades of Chloroflexi were also abundant in the surface soil. During the light hours of the 2007 snow-free measurement period, CO2 uptake was conservatively estimated to be 23.7 g C m,2 season,1. Our study reveals that photoautotrophic microbial communities play an important role in the biogeochemical cycling of subnival zone soil. [source]


Temperature and soil moisture effects on dissolved organic matter release from a moorland Podzol O horizon under field and controlled laboratory conditions

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 5 2007
M. I. Stutter
Summary Organic upland soils store large amounts of humified organic matter. The mechanisms controlling the leaching of this C pool are not completely understood. To examine the effects of temperature and microbial cycling on C leaching, we incubated five unvegetated soil cores from a Podzol O horizon (from NE Scotland), over a simulated natural temperature cycle for 1 year, whilst maintaining a constant soil moisture content. Soil cores were leached with artificial rain (177 mm each, monthly) and the leachates analysed for dissolved organic carbon (DOC) and their specific C-normalized UV absorbance determined (SUVA, 285 nm). Monthly values of respiration of the incubated soils were determined as CO2 efflux. To examine the effects of vegetation C inputs and soil moisture, in addition to temperature, we sampled O horizon pore waters in situ and collected five additional field soil cores every month. The field cores were leached under controlled laboratory conditions. Hysteresis in the monthly amount of DOC leached from field cores resulted in greater DOC on the rising, than falling temperature phases. This hysteresis suggested that photosynthetic C stimulated greater DOC losses in early summer, whereas limitations in the availability of soil moisture in late summer suppressed microbial decomposition and DOC loss. Greater DOC concentrations of in-situ pore waters than for any core leachates were attributed to the effects of soil drying and physico-chemical processes in the field. Variation in the respiration rates for the incubated soils was related to temperature, and respiration provided a greater pathway of C loss (44 g C m,2 year,1) than DOC (7.2 g C m,2 year,1). Changes in SUVA over spring and summer observed in all experimental systems were related to the period of increased temperature. During this time, DOC became less aromatic, which suggests that lower molecular weight labile compounds were not completely mineralized. The ultimate DOC source appears to be the incomplete microbial decomposition of recalcitrant humified C. In warmer periods, any labile C that is not respired is leached, but in autumn either labile C production ceases, or it is sequestered in soil biomass. [source]


Methane and nitrous oxide fluxes of soils in pure and mixed stands of European beech and Norway spruce

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 5 2006
W. Borken
Summary Tree species can affect the sink and source strength of soils for atmospheric methane and nitrous oxide. Here we report soil methane (CH4) and nitrous oxide (N2O) fluxes of adjacent pure and mixed stands of beech and spruce at Solling, Germany. Mean CH4 uptake rates ranged between 18 and 48 ,g C m,2 hour,1 during 2.5 years and were about twice as great in both mixed and the pure beech stand as in the pure spruce stand. CH4 uptake was negatively correlated with the dry mass of the O horizon, suggesting that this diminishes the transport of atmospheric CH4 into the mineral soil. Mean N2O emission was rather small, ranging between 6 and 16 ,g N m,2 hour,1 in all stands. Forest type had a significant effect on N2O emission only in one mixed stand during the growing season. We removed the O horizon in additional plots to study its effect on gas fluxes over 1.5 years, but N2O emissions were not altered by this treatment. Surprisingly, CH4 uptake decreased in both mixed and the pure beech stands following the removal of the O horizon. The decrease in CH4 uptake coincided with an increase in the soil moisture content of the mineral soil. Hence, O horizons may maintain the gas diffusivity within the mineral soil by storing water which cannot penetrate into the mineral soil after rainfall. Our results indicate that conversion of beech forests to beech,spruce and pure spruce forests could decrease soil CH4 uptake, while the long-term effect on N2O emissions is expected to be rather small. [source]


Effects of increasing fire frequency on black carbon and organic matter in Podzols of Siberian Scots pine forests

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2005
C. I. Czimczik
Summary Fires in boreal forests frequently convert organic matter in the organic layer to black carbon, but we know little of how changing fire frequency alters the amount, composition and distribution of black carbon and organic matter within soils, or affects podzolization. We compared black carbon and organic matter (organic carbon and nitrogen) in soils of three Siberian Scots pine forests with frequent, moderately frequent and infrequent fires. Black carbon did not significantly contribute to the storage of organic matter, most likely because it is consumed by intense fires. We found 99% of black carbon in the organic layer; maximum stocks were 72 g m,2. Less intense fires consumed only parts of the organic layer and converted some organic matter to black carbon (> 5 g m,2), whereas more intense fires consumed almost the entire organic layer. In the upper 0.25 m of the mineral soil, black carbon stocks were 0.1 g m,2 in the infrequent fire regime. After fire, organic carbon and nitrogen in the organic layer accumulated with an estimated rate of 14.4 g C m,2 year,1 or 0.241 g N m,2 year,1. Maximum stocks 140 years after fire were 2190 g organic C m,2 and 40 g N m,2, with no differences among fire regimes. With increasing fire frequency, stocks of organic carbon increased from 600 to 1100 g m,2 (0,0.25 m). Stocks of nitrogen in the mineral soil were similar among the regimes (0.04 g m,2). We found that greater intensities of fire reduce amounts of organic matter in the organic layer but that the greater frequencies may slightly increase amounts in the mineral soil. [source]


Abundance and production of bacteria, and relationship to phytoplankton production, in a large tropical lake (Lake Tanganyika)

FRESHWATER BIOLOGY, Issue 6 2009
STEPHANE STENUITE
Summary 1. Abundance and bacterial production (BP) of heterotrophic bacteria (HBact) were measured in the north and south basins of Lake Tanganyika, East Africa, during seasonal sampling series between 2002 and 2007. The major objective of the study was to assess whether BP can supplement phytoplankton particulate primary production (particulate PP) in the pelagic waters, and whether BP and particulate PP are related in this large lake. HBact were enumerated in the 0,100 m surface layer by epifluorescence microscopy and flow cytometry; BP was quantified using 3H-thymidine incorporation, usually in three mixolimnion layers (0,40, 40,60 and 60,100 m). 2. Flow cytometry allowed three subpopulations to be distinguished: low nucleic acid content bacteria (LNA), high nucleic acid content bacteria (HNA) and Synechococcus -like picocyanobacteria (PCya). The proportion of HNA was on average 67% of total bacterial abundance, and tended to increase with depth. HBact abundance was between 1.2 × 105 and 4.8 × 106 cells mL,1, and was maximal in the 0,40 m layer (i.e. roughly, the euphotic layer). Using a single conversion factor of 15 fg C cell,1, estimated from biovolume measurements, average HBact biomass (integrated over a 100-m water column depth) was 1.89 ± 1.05 g C m,2. 3. Significant differences in BP appeared between seasons, especially in the south basin. The range of BP integrated over the 0,100 m layer was 93,735 mg C m,2 day,1, and overlapped with the range of particulate PP (150,1687 mg C m,2 day,1) measured in the same period of time at the same sites. 4. Depth-integrated BP was significantly correlated to particulate PP and chlorophyll- a, and BP in the euphotic layer was on average 25% of PP. 5. These results suggest that HBact contribute substantially to the particulate organic carbon available to consumers in Lake Tanganyika, and that BP may be sustained by phytoplankton-derived organic carbon in the pelagic waters. [source]


The significance of side-arm connectivity for carbon dynamics of the River Danube, Austria

FRESHWATER BIOLOGY, Issue 2 2008
S. PREINER
Summary 1. Side-arms connected to the main stem of the river are key areas for biogeochemical cycling in fluvial landscapes, exhibiting high rates of carbon processing. 2. This work focused on quantifying autochthonous and allochthonous carbon pools and, thereby, on comparing transport and transformation processes in a restored side-arm system of the River Danube (Regelsbrunn). We established a carbon budget and quantified carbon processing from March to September 2003. In addition, data from previous studies during 1997 to 1999 were assessed. 3. Gross primary production (GPP) and community respiration were estimated by diel oxygen time curves and an oxygen mass balance. Plankton primary production was determined to estimate its contribution to GPP under different hydrological conditions. 4. Based on the degree of connectivity, three hydrological phases were differentiated. Most of the organic matter, dominated by allochthonous carbon, was transported in the main channel and through the side-arm during floods, while at intermediate and low flows (and thus connectivity), transformation processes became more important and autochthonous carbon dominated the carbon pool. The side-arm system functioned as a sink for particulate matter [total suspended solids and particulate organic carbon (POC)] and a source of dissolved organic carbon (DOC) and chlorophyll- a. 5. Autochthonous primary production of 4.2 t C day,1 in the side-arm was equivalent to about 20% of the allochthonous inputs of 20 t C day,1 (POC and DOC) entering the area at mean flow (1% of the discharge of the main channel). Pelagic photosynthesis was generally high at mean flow (1.3,3.8 g C m,2 day,1), and contributed up to 90% of system productivity. During long stagnant periods at low discharge, the side-arm was controlled by biological processes and a shift from planktonic to benthic activity occurred (benthic primary production of 0.4,14 g C m,2 day,1). 6. The transformation of the organic matter that passes through the side-arm under different hydrological conditions, points to the importance of these subsystems in contributing autochthonous carbon to the food web of the main channel. [source]


A simple model of the eco-hydrodynamics of the epilimnion of Lake Tanganyika

FRESHWATER BIOLOGY, Issue 11 2007
JAYA NAITHANI
Summary 1. The ecosystem response of Lake Tanganyika was studied using a four-component, nutrient,phytoplankton,zooplankton,detritus, phosphorus-based ecosystem model coupled to a nonlinear, reduced-gravity, circulation model. The ecosystem model, an improved version of the earlier eco-hydrodynamics model developed for Lake Tanganyika, was used to estimate the annual primary production of Lake Tanganyika and its spatial and temporal variability. The simulations were driven with the National Centres for Environmental Protection (NCEP) records for winds and solar radiation forcing. 2. The simulated annual cycles of the four ecosystem variables and the daily net primary production were compared with the observations. The comparison showed that simulations reproduced realistically the general features of the annual cycles of epilimnial phosphate, net primary production and plankton dynamics. 3. The climatic simulations for the years 1970,2006 yielded a daily averaged integrated upper layer net production ranging from 0.11 to 1.78 g C m,2 day,1 and daily averaged chlorophyll- a (chl- a) from 0.16 to 4.3 mg m,3. Although the nutrient concentrations in the epilimnion during the strong wind years were high, the net production was low, which is partly because of the greater vertical mixing, produced by strong winds, exposing the phytoplankton to low light conditions in deeper waters. The simulated annual net production and chl- a agreed quite well with observed production available in the literature. 4. We envisage using this model to predict the future scenarios of primary productivity in the lake. [source]


Respiratory carbon loss of calcareous grasslands in winter shows no effects of 4 years' CO2 enrichment

FUNCTIONAL ECOLOGY, Issue 2 2002
M. Volk
Summary 1CO2 exchange measurements in long-term CO2 -enrichment experiments suggest large net carbon gains by ecosystems during the growing season that are not accounted for by above-ground plant biomass. Considerable amounts of C might therefore be allocated below ground. 2Winter ecosystem respiration from temperate grasslands under elevated CO2 may account for the loss of a significant part of the extra C gained during the growing season. To test this hypothesis, dark respiration was assessed throughout the winter of the fourth year of CO2 enrichment in a calcareous grassland. 3Using these data, a model was parameterized to estimate whole-winter respiratory CO2 losses. From November to February, 154 9 g C m,2 were respired under elevated CO2 and 144 5 g C m,2 under ambient [CO2], with no significant difference between the CO2 treatments. 4We conclude that (i) wintertime respiration does not constitute a larger C loss from the ecosystem at elevated CO2; and (ii) the absence of respiratory responses implies no extra growing-season C inputs with month-to-year turnover times at elevated CO2. [source]


The impact of co-occurring tree and grassland species on carbon sequestration and potential biofuel production

GCB BIOENERGY, Issue 6 2009
RAMESH LAUNGANI
Abstract We evaluated how three co-occurring tree and four grassland species influence potentially harvestable biofuel stocks and above- and belowground carbon pools. After 5 years, the tree Pinus strobus had 6.5 times the amount of aboveground harvestable biomass as another tree Quercus ellipsoidalis and 10 times that of the grassland species. P. strobus accrued the largest total plant carbon pool (1375 g C m,2 or 394 g C m,2 yr), while Schizachyrium scoparium accrued the largest total plant carbon pool among the grassland species (421 g C m,2 or 137 g C m,2 yr). Quercus ellipsoidalis accrued 850 g C m,2, Q. macrocarpa 370 g C m,2, Poa pratensis 390 g C m,2, Solidago canadensis 132 g C m,2, and Lespedeza capitata 283 g C m,2. Only P. strobus and Q. ellipsoidalis significantly sequestered carbon during the experiment. Species differed in total ecosystem carbon accumulation from ,21.3 to +169.8 g C m,2 yr compared with the original soil carbon pool. Plant carbon gains with P. strobus were paralleled by a decrease of 16% in soil carbon and a nonsignificant decline of 9% for Q. ellipsoidalis. However, carbon allocation differed among species, with P. strobus allocating most aboveground in a disturbance prone aboveground pool, whereas Q. ellipsoidalis, allocated most carbon in less disturbance sensitive belowground biomass. These differences have strong implications for terrestrial carbon sequestration and potential biofuel production. For P. strobus, aboveground plant carbon harvest for biofuel would result in no net carbon sequestration as declines in soil carbon offset plant carbon gains. Conversely the harvest of Q. ellipsoidalis aboveground biomass would result in net sequestration of carbon belowground due to its high allocation belowground, but would yield lower amounts of aboveground biomass. Our results demonstrate that plant species can differentially impact ecosystem carbon pools and the distribution of carbon above and belowground. [source]


Diurnal and seasonal variation in methane emissions in a northern Canadian peatland measured by eddy covariance

GLOBAL CHANGE BIOLOGY, Issue 9 2010
KEVIN D. LONG
Abstract Eddy covariance measurements of methane (CH4) net flux were made in a boreal fen, typical of the most abundant peatlands in western Canada during May,September 2007. The objectives of this study were to determine: (i) the magnitude of diurnal and seasonal variation in CH4 net flux, (ii) the relationship between the temporally varying flux rates and associated changes in controlling biotic and abiotic factors, and (iii) the contribution of CH4 emission to the ecosystem growing season carbon budget. There was significant diurnal variation in CH4 emission during the peak of the growing season that was strongly correlated with associated changes in solar radiation, latent heat flux, air temperature and ecosystem conductance to water vapor. During days 181,215, nighttime average CH4 efflux was only 47% of the average midday values. The peak value for daily average CH4 emission rate was approximately 80 nmol m,2 s,1 (4.6 mg CH4 m,2 h,1), and seasonal variation in CH4 flux was strongly correlated with changes in soil temperature. Integrated over the entire measurement period [days 144,269 (late May,late September)], the total CH4 emission was 3.2 g CH4 m,2, which was quite low relative to other wetland ecosystems and to the simultaneous high rate of ecosystem net CO2 sequestration that was measured (18.1 mol CO2 m,2 or 217 g C m,2). We estimate that the negative radiative forcing (cooling) associated with net carbon storage over the life of the peatland (approximately 2200 years) was at least twice the value of positive radiative forcing (warming) caused by net CH4 emission over the last 50 years. [source]


Shrub expansion stimulates soil C and N storage along a coastal soil chronosequence

GLOBAL CHANGE BIOLOGY, Issue 7 2010
STEVEN T. BRANTLEY
Abstract Expansion of woody vegetation in grasslands is a worldwide phenomenon with implications for C and N cycling at local, regional and global scales. Although woody encroachment is often accompanied by increased annual net primary production (ANPP) and increased inputs of litter, mesic ecosystems may become sources for C after woody encroachment because stimulation of soil CO2 efflux releases stored soil carbon. Our objective was to determine if young, sandy soils on a barrier island became a sink for C after encroachment of the nitrogen-fixing shrub Morella cerifera, or if associated stimulation of soil CO2 efflux mitigated increased litterfall. We monitored variations in litterfall in shrub thickets across a chronosequence of shrub expansion and compared those data to previous measurements of ANPP in adjacent grasslands. In the final year, we quantified standing litter C and N pools in shrub thickets and soil organic matter (SOM), soil organic carbon (SOC), soil total nitrogen (TN) and soil CO2 efflux in shrub thickets and adjacent grasslands. Heavy litterfall resulted in a dense litter layer storing an average of 809 g C m,2 and 36 g N m,2. Although soil CO2 efflux was stimulated by shrub encroachment in younger soils, soil CO2 efflux did not vary between shrub thickets and grasslands in the oldest soils and increases in CO2 efflux in shrub thickets did not offset contributions of increased litterfall to SOC. SOC was 3.6,9.8 times higher beneath shrub thickets than in grassland soils and soil TN was 2.5,7.7 times higher under shrub thickets. Accumulation rates of soil and litter C were highest in the youngest thicket at 101 g m,2 yr,1 and declined with increasing thicket age. Expansion of shrubs on barrier islands, which have low levels of soil carbon and high potential for ANPP, has the potential to significantly increase ecosystem C sequestration. [source]


The European carbon balance.

GLOBAL CHANGE BIOLOGY, Issue 5 2010
Part 2: croplands
Abstract We estimated the long-term carbon balance [net biome production (NBP)] of European (EU-25) croplands and its component fluxes, over the last two decades. Net primary production (NPP) estimates, from different data sources ranged between 490 and 846 gC m,2 yr,1, and mostly reflect uncertainties in allocation, and in cropland area when using yield statistics. Inventories of soil C change over arable lands may be the most reliable source of information on NBP, but inventories lack full and harmonized coverage of EU-25. From a compilation of inventories we infer a mean loss of soil C amounting to 17 g m,2 yr,1. In addition, three process-based models, driven by historical climate and evolving agricultural technology, estimate a small sink of 15 g C m,2 yr,1 or a small source of 7.6 g C m,2 yr,1. Neither the soil C inventory data, nor the process model results support the previous European-scale NBP estimate by Janssens and colleagues of a large soil C loss of 90 ± 50 gC m,2 yr,1. Discrepancy between measured and modeled NBP is caused by erosion which is not inventoried, and the burning of harvest residues which is not modeled. When correcting the inventory NBP for the erosion flux, and the modeled NBP for agricultural fire losses, the discrepancy is reduced, and cropland NBP ranges between ,8.3 ± 13 and ,13 ± 33 g C m,2 yr,1 from the mean of the models and inventories, respectively. The mean nitrous oxide (N2O) flux estimates ranges between 32 and 37 g C Eq m,2 yr,1, which nearly doubles the CO2 losses. European croplands act as small CH4 sink of 3.3 g C Eq m,2 yr,1. Considering ecosystem CO2, N2O and CH4 fluxes provides for the net greenhouse gas balance a net source of 42,47 g C Eq m,2 yr,1. Intensifying agriculture in Eastern Europe to the same level Western Europe amounts is expected to result in a near doubling of the N2O emissions in Eastern Europe. N2O emissions will then become the main source of concern for the impact of European agriculture on climate. [source]


The European carbon balance.

GLOBAL CHANGE BIOLOGY, Issue 5 2010
Part 3: forests
Abstract We present a new synthesis, based on a suite of complementary approaches, of the primary production and carbon sink in forests of the 25 member states of the European Union (EU-25) during 1990,2005. Upscaled terrestrial observations and model-based approaches agree within 25% on the mean net primary production (NPP) of forests, i.e. 520±75 g C m,2 yr,1 over a forest area of 1.32 × 106 km2 to 1.55 × 106 km2 (EU-25). New estimates of the mean long-term carbon forest sink (net biome production, NBP) of EU-25 forests amounts 75±20 g C m,2 yr,1. The ratio of NBP to NPP is 0.15±0.05. Estimates of the fate of the carbon inputs via NPP in wood harvests, forest fires, losses to lakes and rivers and heterotrophic respiration remain uncertain, which explains the considerable uncertainty of NBP. Inventory-based assessments and assumptions suggest that 29±15% of the NBP (i.e., 22 g C m,2 yr,1) is sequestered in the forest soil, but large uncertainty remains concerning the drivers and future of the soil organic carbon. The remaining 71±15% of the NBP (i.e., 53 g C m,2 yr,1) is realized as woody biomass increments. In the EU-25, the relatively large forest NBP is thought to be the result of a sustained difference between NPP, which increased during the past decades, and carbon losses primarily by harvest and heterotrophic respiration, which increased less over the same period. [source]


Indirect effects of soil moisture reverse soil C sequestration responses of a spring wheat agroecosystem to elevated CO2

GLOBAL CHANGE BIOLOGY, Issue 1 2010
SVEN MARHAN
Abstract Increased plant productivity under elevated atmospheric CO2 concentrations might increase soil carbon (C) inputs and storage, which would constitute an important negative feedback on the ongoing atmospheric CO2 rise. However, elevated CO2 often also leads to increased soil moisture, which could accelerate the decomposition of soil organic matter, thus counteracting the positive effects via C cycling. We investigated soil C sequestration responses to 5 years of elevated CO2 treatment in a temperate spring wheat agroecosystem. The application of 13C-depleted CO2 to the elevated CO2 plots enabled us to partition soil C into recently fixed C (Cnew) and pre-experimental C (Cold) by 13C/12C mass balance. Gross C inputs to soils associated with Cnew accumulation and the decomposition of Cold were then simulated using the Rothamsted C model ,RothC.' We also ran simulations with a modified RothC version that was driven directly by measured soil moisture and temperature data instead of the original water balance equation that required potential evaporation and precipitation as input. The model accurately reproduced the measured Cnew in bulk soil and microbial biomass C. Assuming equal soil moisture in both ambient and elevated CO2, simulation results indicated that elevated CO2 soils accumulated an extra ,40,50 g C m,2 relative to ambient CO2 soils over the 5 year treatment period. However, when accounting for the increased soil moisture under elevated CO2 that we observed, a faster decomposition of Cold resulted; this extra C loss under elevated CO2 resulted in a negative net effect on total soil C of ,30 g C m,2 relative to ambient conditions. The present study therefore demonstrates that positive effects of elevated CO2 on soil C due to extra soil C inputs can be more than compensated by negative effects of elevated CO2 via the hydrological cycle. [source]


Holocene carbon burial by lakes in SW Greenland

GLOBAL CHANGE BIOLOGY, Issue 11 2009
N. J. ANDERSON
Abstract The role of the Arctic in future global change processes is predicted to be important because of the large carbon (C) stocks contained in frozen soils and peatlands. Lakes are an important component of arctic landscapes although their role in storing C is not well prescribed. The area around Kangerlussuaq, SW Greenland (66,68°N, 49,54°W) has extremely high lake density, with ,20 000 lakes that cover about 14% of the land area. C accumulation rates and standing stock (kg C m,2), representing late- to mid-Holocene C burial, were calculated from AMS 14C-dated sediment cores from 11 lakes. Lake ages range from ,10 000 cal yr bp to ,5400 cal yr bp, and reflect the withdrawal of the ice sheet from west to east. Total standing stock of C accumulated in the studied lakes for the last ,8000 years ranged from 28 to 71 kg C m,2, (mean: ,42 kg C m,2). These standing stock determinations yield organic C accumulation rates of 3.5,11.5 g C m,2 yr,1 (mean: ,6 g C m,2 yr,1) for the last 4500 years. Mean C accumulation rates are not different for the periods 8,4.5 and 4.5,0 ka, despite cooling trends associated with the neoglacial period after 4.5 ka. We used the mean C standing stock to estimate the total C pool in small lakes (<100 ha) of the Kangerlussuaq region to be ,4.9 × 1013 g C. This C stock is about half of that estimated for the soil pool in this region (but in 5% of the land area) and indicates the importance of incorporating lakes into models of regional C balance at high latitudes. [source]


Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004

GLOBAL CHANGE BIOLOGY, Issue 11 2009
YUANHE YANG
Abstract Climate warming is likely inducing carbon loss from soils of northern ecosystems, but little evidence comes from large-scale observations. Here we used data from a repeated soil survey and remote sensing vegetation index to explore changes in soil organic carbon (SOC) stock on the Tibetan Plateau during the past two decades. Our results showed that SOC stock in the top 30 cm depth in alpine grasslands on the plateau amounted to 4.4 Pg C (1 Pg=1015 g), with an overall average of 3.9 kg C m,2. SOC changes during 1980s,2004 were estimated at ,0.6 g C m,2 yr,1, ranging from ,36.5 to 35.8 g C m,2 yr,1 at 95% confidence, indicating that SOC stock in the Tibetan alpine grasslands remained relatively stable over the sampling periods. Our findings are nonconsistent with previous reports of loss of soil C in grassland ecosystems due to the accelerated decomposition with warming. In the case of the alpine grasslands on the Tibetan Plateau studied here, we speculate that increased rates of decomposition as soils warmed during the last two decades may have been compensated by increased soil C inputs due to increased grass productivity. These results suggest that soil C stock in terrestrial ecosystems may respond differently to climate change depending on ecosystem type, regional climate pattern, and intensity of human disturbance. [source]


Ecosystem,atmosphere exchange of CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China

GLOBAL CHANGE BIOLOGY, Issue 3 2009
CHANGCHUN SONG
Abstract Natural wetlands are critically important to global change because of their role in modulating atmospheric concentrations of CO2, CH4, and N2O. One 4-year continuous observation was conducted to examine the exchanges of CH4 and N2O between three wetland ecosystems and the atmosphere as well as the ecosystem respiration in the Sanjiang Plain in Northeastern China. From 2002 to 2005, the mean annual budgets of CH4 and N2O, and ecosystem respiration were 39.40 ± 6.99 g C m,2 yr,1, 0.124 ± 0.05 g N m,2 yr,1, and 513.55 ± 8.58 g C m,2 yr,1 for permanently inundated wetland; 4.36 ± 1.79 g C m,2 yr,1, 0.11 ± 0.12 g N m,2 yr,1, and 880.50 ± 71.72 g C m,2 yr,1 for seasonally inundated wetland; and 0.21 ± 0.1 g C m,2 yr,1, 0.28 ± 0.11 g N m,2 yr,1, and 1212.83 ± 191.98 g C m,2 yr,1 for shrub swamp. The substantial interannual variation of gas fluxes was due to the significant climatic variability which underscores the importance of long-term continuous observations. The apparent seasonal pattern of gas emissions associated with a significant relationship of gas fluxes to air temperature implied the potential effect of global warming on greenhouse gas emissions from natural wetlands. The budgets of CH4 and N2O fluxes and ecosystem respiration were highly variable among three wetland types, which suggest the uncertainties in previous studies in which all kinds of natural wetlands were treated as one or two functional types. New classification of global natural wetlands in more detailed level is highly expected. [source]


Enhanced litter input rather than changes in litter chemistry drive soil carbon and nitrogen cycles under elevated CO2: a microcosm study

GLOBAL CHANGE BIOLOGY, Issue 2 2009
LINGLI LIU
Abstract Elevated CO2 has been shown to stimulate plant productivity and change litter chemistry. These changes in substrate availability may then alter soil microbial processes and possibly lead to feedback effects on N availability. However, the strength of this feedback, and even its direction, remains unknown. Further, uncertainty remains whether sustained increases in net primary productivity will lead to increased long-term C storage in soil. To examine how changes in litter chemistry and productivity under elevated CO2 influence microbial activity and soil C formation, we conducted a 230-day microcosm incubation with five levels of litter addition rate that represented 0, 0.5, 1.0, 1.4 and 1.8 × litterfall rates observed in the field for aspen stand growing under control treatments at the Aspen FACE experiment in Rhinelander, WI, USA. Litter and soil samples were collected from the corresponding field control and elevated CO2 treatment after trees were exposed to elevated CO2 (560 ppm) for 7 years. We found that small decreases in litter [N] under elevated CO2 had minor effects on microbial biomass carbon, microbial biomass nitrogen and dissolved inorganic nitrogen. Increasing litter addition rates resulted in linear increase in total C and new C (C from added litter) that accumulated in whole soil as well as in the high density soil fraction (HDF), despite higher cumulative C loss by respiration. Total N retained in whole soil and in HDF also increased with litter addition rate as did accumulation of new C per unit of accumulated N. Based on our microcosm comparisons and regression models, we expected that enhanced C inputs rather than changes in litter chemistry would be the dominant factor controlling soil C levels and turnover at the current level of litter production rate (230 g C m,2 yr,1 under ambient CO2). However, our analysis also suggests that the effects of changes in biochemistry caused by elevated CO2 could become significant at a higher level of litter production rate, with a trend of decreasing total C in HDF, new C in whole soil, as well as total N in whole soil and HDF. [source]


Soil carbon fluxes and stocks in a Great Lakes forest chronosequence

GLOBAL CHANGE BIOLOGY, Issue 1 2009
JIANWU TANG
Abstract We measured soil respiration and soil carbon stocks, as well as micrometeorological variables in a chronosequence of deciduous forests in Wisconsin and Michigan. The chronosequence consisted of (1) four recently disturbed stands, including a clearcut and repeatedly burned stand (burn), a blowdown and partial salvage stand (blowdown), a clearcut with sparse residual overstory (residual), and a regenerated stand from a complete clearcut (regenerated); (2) four young aspen (Populus tremuloides) stands in average age of 10 years; (3) four intermediate aspen stands in average age of 26 years; (4) four mature northern hardwood stands in average age of 73 years; and (5) an old-growth stand approximately 350-years old. We fitted site-based models and used continuous measurements of soil temperature to estimate cumulative soil respiration for the growing season of 2005 (days 133,295). Cumulative soil respiration in the growing season was estimated to be 513, 680, 747, 747, 794, 802, 690, and 571 g C m,2 in the burn, blowdown, residual, regenerated, young, intermediate, mature, and old-growth stands, respectively. The measured apparent temperature sensitivity of soil respiration was the highest in the regenerated stand, and declined from the young stands to the old-growth. Both, cumulative soil respiration and basal soil respiration at 10 °C, increased during stand establishment, peaked at intermediate age, and then decreased with age. Total soil carbon at 0,60 cm initially decreased after harvest, and increased after stands established. The old-growth stand accumulated carbon in deep layers of soils, but not in the surface soils. Our study suggests a complexity of long-term soil carbon dynamics, both in vertical depth and temporal scale. [source]


Impact of past and present land-management on the C-balance of a grassland in the Swiss Alps

GLOBAL CHANGE BIOLOGY, Issue 11 2008
NELE ROGIERS
Abstract Grasslands cover about 40% of the ice-free global terrestrial surface, but their quantitative importance in global carbon exchange with the atmosphere is still highly uncertain, and thus their potential for carbon sequestration remains speculative. Here, we report on CO2 exchange of an extensively used mountain hay meadow and pasture in the Swiss pre-Alps on high-organic soils (7,45% C by mass) over a 3-year period (18 May 2002,20 September 2005), including the European summer 2003 heat-wave period. During all 3 years, the ecosystem was a net source of CO2 (116,256 g C m,2 yr,1). Harvests and grazing cows (mostly via C export in milk) further increased these C losses, which were estimated at 355 g C m,2 yr,1 during 2003 (95% confidence interval 257,454 g C m,2 yr,1). Although annual carbon losses varied considerably among years, the CO2 budget during summer 2003 was not very different from the other two summers. However, and much more importantly, the winter that followed the warm summer of 2003 observed a significantly higher carbon loss when there was snow (133±6 g C m,2) than under comparable conditions during the other two winters (73±5 and 70±4 g C m,2, respectively). The continued annual C losses can most likely be attributed to the long-term effects of drainage and peat exploitation that began 119 years ago, with the last significant drainage activities during the Second World War around 1940. The most realistic estimate based on depth profiles of ash content after combustion suggests that there is an 500,910 g C m,2 yr,1 loss associated with the decomposition of organic matter. Our results clearly suggest that putting efforts into preserving still existing carbon stocks may be more successful than attempts to increase sequestration rates in such high-organic mountain grassland soils. [source]


Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem

GLOBAL CHANGE BIOLOGY, Issue 7 2008
GEORG WOHLFAHRT
Abstract The net ecosystem CO2 exchange (NEE) between a Mojave Desert ecosystem and the atmosphere was measured over the course of 2 years at the Mojave Global Change Facility (MGCF, Nevada, USA) using the eddy covariance method. The investigated desert ecosystem was a sink for CO2, taking up 102±67 and 110±70 g C m,2 during 2005 and 2006, respectively. A comprehensive uncertainty analysis showed that most of the uncertainty of the inferred sink strength was due to the need to account for the effects of air density fluctuations on CO2 densities measured with an open-path infrared gas analyser. In order to keep this uncertainty within acceptable bounds, highest standards with regard to maintenance of instrumentation and flux measurement postprocessing have to be met. Most of the variability in half-hourly NEE was explained by the amount of incident photosynthetically active radiation (PAR). On a seasonal scale, PAR and soil water content were the most important determinants of NEE. Precipitation events resulted in an initial pulse of CO2 to the atmosphere, temporarily reducing NEE or even causing it to switch sign. During summer, when soil moisture was low, a lag of 3,4 days was observed before the correlation between NEE and precipitation switched from positive to negative, as opposed to conditions of high soil water availability in spring, when this transition occurred within the same day the rain took place. Our results indicate that desert ecosystem CO2 exchange may be playing a much larger role in global carbon cycling and in modulating atmospheric CO2 levels than previously assumed , especially since arid and semiarid biomes make up >30% of Earth's land surface. [source]


Seasonal and annual variation of carbon exchange in an evergreen Mediterranean forest in southern France

GLOBAL CHANGE BIOLOGY, Issue 4 2008
V. ALLARD
Abstract We present 9 years of eddy covariance measurements made over an evergreen Mediterranean forest in southern France. The goal of this study was to quantify the different components of the carbon (C) cycle, gross primary production (GPP) and ecosystem respiration (Reco), and to assess the effects of climatic variables on these fluxes and on the net ecosystem exchange of carbon dioxide. The Puéchabon forest acted as a net C sink of ,254 g C m,2 yr,1, with a GPP of 1275 g C m,2 yr,1 and a Reco of 1021 g C m,2 yr,1. On average, 83% of the net annual C sink occurred between March and June. The effects of exceptional events such the insect-induced partial canopy defoliation that occurred in spring 2005, and the spring droughts of 2005 and 2006 are discussed. A high interannual variability of ecosystem C fluxes during summer and autumn was observed but the resulting effect on the annual net C budget was moderate. Increased severity and/or duration of summer drought under climate change do not appear to have the potential to negatively impact the average C budget of this ecosystem. On the contrary, factors affecting ecosystem functioning (drought and/or defoliation) during March,June period may reduce dramatically the annual C balance of evergreen Mediterranean forests. [source]


Quantifying carbon sequestration as a result of soil erosion and deposition: retrospective assessment using caesium-137 and carbon inventories

GLOBAL CHANGE BIOLOGY, Issue 12 2007
TIMOTHY ANDREW QUINE
Abstract The role of soil erosion in the global carbon cycle remains a contested subject. A new approach to the retrospective derivation of erosion-induced quantitative fluxes of carbon between soil and atmosphere is presented and applied. The approach is based on the premise that soil redistribution perturbs the carbon cycle by driving disequilibrium between soil carbon content and input. This perturbation is examined by establishing the difference between measured carbon inventories and the inventories that would be found if input and content were in dynamic equilibrium. The carbon inventory of a profile in dynamic equilibrium is simulated by allowing lateral and vertical redistribution of carbon but treating all other profile inputs as equal to outputs. Caesium-137 is used to derive rates of vertical and lateral soil redistribution. Both point and field-scale estimates of carbon exchange with the atmosphere are derived using the approach for a field subject to mechanized agricultural in the United Kingdom. Sensitivity analysis is undertaken and demonstrates that the approach is robust. The results indicate that, despite a 15% decline in the carbon content of the cultivation layer of the eroded part of the field, this area has acted as a net sink of 11 ± 2 g C m,2 yr,1 over the last half century and that in the field as a whole, soil redistribution has driven a sink of 7 ± 2 g C m,2 yr,1 (6 ± 2 g C m,2 yr,1 if all eroded carbon transported beyond the field boundary is lost to the atmosphere) over the same period. This is the first empirical evidence for, and quantification of, dynamic replacement of eroded carbon. The relatively modest field-scale net sink is more consistent with the identification of erosion and deposition as a carbon sink than a carbon source. There is a clear need to assemble larger databases with which to evaluate critically the carbon sequestration potential of erosion and deposition in a variety of conditions of agricultural management, climate, relief, and soil type. In any case, this study demonstrated that the operation of erosion and deposition processes within the boundaries of agricultural fields must be understood as a key driver of the net carbon cycle consequences of cultivating land. [source]


Net regional ecosystem CO2 exchange from airborne and ground-based eddy covariance, land-use maps and weather observations

GLOBAL CHANGE BIOLOGY, Issue 3 2007
F. MIGLIETTA
Abstract Measurements of regional net ecosystem exchange (NEE) were made over a period of 21 days in summer 2002 in the South-Central part of the Netherlands and extrapolated to an area of 13 000 km2 using a combination of flux measurements made by a Sky Arrow ERA research aircraft, half-hourly eddy covariance data from four towers, half-hourly weather data recorded by three weather stations and detailed information on regional land use. The combination of this type of information allowed to estimate the net contribution of the terrestrial ecosystems to the overall regional carbon flux and to map dynamically the temporal and spatial variability of the fluxes. A regional carbon budget was calculated for the study period and the contributions of the different land uses to the overall regional flux, were assessed. Ecosystems were, overall, a small source of carbon to the atmosphere equivalent to to 0.23±0.025 g C m,2 day,1. When considered separately, arable and grasslands were a source of, respectively, 0.68±0.022 and 1.28±0.026 g C m,2 day,1. Evergreen and deciduous forests were instead a sink of ,1.42±0.015 g C m,2 day,1. During the study period, forests offset approximately 3.5% of anthropogenic carbon emission estimates obtained from inventory data. Lacking of a robust validation, NEE values obtained with this method were compared with independent state of art estimates of the regional carbon balance that were obtained by applying a semi-empirical model of NEE driven by MODIS satellite fAPAR data. The comparison showed an acceptable matching for the carbon balance of forest that was a sink in both cases, while a much larger difference for arable and grassland was found. Those ecosystems were a sink for satellite-based estimates while they were a source for the combined aircraft and tower estimates. Possible causes of such differences are discussed and partly addressed. The importance of new methods for determining carbon balance at the regional scale, is outlined. [source]


Climatic controls on the carbon and water balances of a boreal aspen forest, 1994,2003

GLOBAL CHANGE BIOLOGY, Issue 3 2007
ALAN G. BARR
Abstract The carbon and water budgets of boreal and temperate broadleaf forests are sensitive to interannual climatic variability and are likely to respond to climate change. This study analyses 9 years of eddy-covariance data from the Boreal Ecosystem Research and Monitoring Sites (BERMS) Southern Old Aspen site in central Saskatchewan, Canada and characterizes the primary climatic controls on evapotranspiration, net ecosystem production (FNEP), gross ecosystem photosynthesis (P) and ecosystem respiration (R). The study period was dominated by two climatic extremes: extreme warm and cool springs, which produced marked contrasts in the canopy duration, and a severe, 3-year drought. Annual FNEP varied among years from 55 to 367 g C m,2 (mean 172, SD 94). Interannual variability in FNEP was controlled primarily by factors that affected the R/P ratio, which varied between 0.74 and 0.96 (mean 0.87, SD 0.06). Canopy duration enhanced P and FNEP with no apparent effect on R. The fraction of annual photosynthetically active radiation (PAR) that was absorbed by the canopy foliage varied from 38% in late leaf-emergence years to 51% in early leaf-emergence years. Photosynthetic light-use efficiency (mean 0.0275, SD 0.026 mol C mol,1 photons) was relatively constant during nondrought years but declined with drought intensity to a minimum of 0.0228 mol C mol,1 photons during the most severe drought year. The impact of drought on FNEP varied with drought intensity. Years of mild-to-moderate drought suppressed R while having little effect on P, so that FNEP was enhanced. Years of severe drought suppressed both R and P, causing either little change or a subtle reduction in FNEP. The analysis produced new insights into the dominance of canopy duration as the most important biophysical control on FNEP. The results suggested a simple conceptual model for annual FNEP in boreal deciduous forests. When water is not limiting, annual P is controlled by canopy duration via its influence on absorbed PAR at constant light-use efficiency. Water stress suppresses P, by reducing light-use efficiency, and R, by limiting growth and/or suppressing microbial respiration. The high photosynthetic light-use efficiency showed this site to be a highly productive boreal deciduous forest, with properties similar to many temperate deciduous forests. [source]


Initial cultivation of a temperate-region soil immediately accelerates aggregate turnover and CO2 and N2O fluxes

GLOBAL CHANGE BIOLOGY, Issue 8 2006
A. STUART GRANDY
Abstract The immediate effects of tillage on protected soil C and N pools and on trace gas emissions from soils at precultivation levels of native C remain largely unknown. We measured the response to cultivation of CO2 and N2O emissions and associated environmental factors in a previously uncultivated U.S. Midwest Alfisol with C concentrations that were indistinguishable from those in adjacent late successional forests on the same soil type (3.2%). Within 2 days of initial cultivation in 2002, tillage significantly (P=0.001, n=4) increased CO2 fluxes from 91 to 196 mg CO2 -C m,2 h,1 and within the first 30 days higher fluxes because of cultivation were responsible for losses of 85 g CO2 -C m,2. Additional daily C losses were sustained during a second and third year of cultivation of the same plots at rates of 1.9 and 1.0 g C m,2 day,1, respectively. Associated with the CO2 responses were increased soil temperature, substantially reduced soil aggregate size (mean weight diameter decreased 35% within 60 days), and a reduction in the proportion of intraaggregate, physically protected light fraction organic matter. Nitrous oxide fluxes in cultivated plots increased 7.7-fold in 2002, 3.1-fold in 2003, and 6.7-fold in 2004 and were associated with increased soil NO3, concentrations, which approached 15 ,g N g,1. Decreased plant N uptake immediately after tillage, plus increased mineralization rates and fivefold greater nitrifier enzyme activity, likely contributed to increased NO3, concentrations. Our results demonstrate that initial cultivation of a soil at precultivation levels of native soil C immediately destabilizes physical and microbial processes related to C and N retention in soils and accelerates trace gas fluxes. Policies designed to promote long-term C sequestration may thus need to protect soils from even occasional cultivation in order to preserve sequestered C. [source]


Ecohydrological impacts of woody-plant encroachment: seasonal patterns of water and carbon dioxide exchange within a semiarid riparian environment

GLOBAL CHANGE BIOLOGY, Issue 2 2006
RUSSELL L. SCOTT
Abstract Across many dryland regions, historically grass-dominated ecosystems have been encroached upon by woody-plant species. In this paper, we compare ecosystem water and carbon dioxide (CO2) fluxes over a grassland, a grassland,shrubland mosaic, and a fully developed woodland to evaluate potential consequences of woody-plant encroachment on important ecosystem processes. All three sites were located in the riparian corridor of a river in the southwest US. As such, plants in these ecosystems may have access to moisture at the capillary fringe of the near-surface water table. Using fluxes measured by eddy covariance in 2003 we found that ecosystem evapotranspiration (ET) and net ecosystem exchange of carbon dioxide (NEE) increased with increasing woody-plant dominance. Growing season ET totals were 407, 450, and 639 mm in the grassland, shrubland, and woodland, respectively, and in excess of precipitation by 227, 265, and 473 mm. This excess was derived from groundwater, especially during the extremely dry premonsoon period when this was the only source of moisture available to plants. Access to groundwater by the deep-rooted woody plants apparently decouples ecosystem ET from gross ecosystem production (GEP) with respect to precipitation. Compared with grasses, the woody plants were better able to use the stable groundwater source and had an increased net CO2 gain during the dry periods. This enhanced plant activity resulted in substantial accumulation of leaf litter on the soil surface that, during rainy periods, may lead to high microbial respiration rates that offset these photosynthetic fluxes. March,December (primary growing season) totals of NEE were ,63, ,212, and ,233 g C m,2 in the grassland, shrubland, and woodland, respectively. Thus, there was a greater disparity between ecosystem water use and the strength of the CO2 sink as woody plants increased across the encroachment gradient. Despite a higher density of woody plants and a greater plant productivity in the woodland than in the shrubland, the woodland produced a larger respiration response to rainfall that largely offset its higher photosynthetic potential. These data suggest that the capacity for woody plants to exploit water resources in riparian areas results in enhanced carbon sequestration at the expense of increased groundwater use under current climate conditions, but the potential does not scale specifically as a function of woody-plant abundance. These results highlight the important roles of water sources and ecosystem structure on the control of water and carbon balances in dryland areas. [source]


Importance of changing CO2, temperature, precipitation, and ozone on carbon and water cycles of an upland-oak forest: incorporating experimental results into model simulations

GLOBAL CHANGE BIOLOGY, Issue 9 2005
Paul J. Hanson
Abstract Observed responses of upland-oak vegetation of the eastern deciduous hardwood forest to changing CO2, temperature, precipitation and tropospheric ozone (O3) were derived from field studies and interpreted with a stand-level model for an 11-year range of environmental variation upon which scenarios of future environmental change were imposed. Scenarios for the year 2100 included elevated [CO2] and [O3] (+385 ppm and +20 ppb, respectively), warming (+4°C), and increased winter precipitation (+20% November,March). Simulations were run with and without adjustments for experimentally observed physiological and biomass adjustments. Initial simplistic model runs for single-factor changes in CO2 and temperature predicted substantial increases (+191% or 508 g C m,2 yr,1) or decreases (,206% or ,549 g C m,2 yr,1), respectively, in mean annual net ecosystem carbon exchange (NEEa,266±23 g C m,2 yr,1 from 1993 to 2003). Conversely, single-factor changes in precipitation or O3 had comparatively small effects on NEEa (0% and ,35%, respectively). The combined influence of all four environmental changes yielded a 29% reduction in mean annual NEEa. These results suggested that future CO2 -induced enhancements of gross photosynthesis would be largely offset by temperature-induced increases in respiration, exacerbation of water deficits, and O3 -induced reductions in photosynthesis. However, when experimentally observed physiological adjustments were included in the simulations (e.g. acclimation of leaf respiration to warming), the combined influence of the year 2100 scenario resulted in a 20% increase in NEEa not a decrease. Consistent with the annual model's predictions, simulations with a forest succession model run for gradually changing conditions from 2000 to 2100 indicated an 11% increase in stand wood biomass in the future compared with current conditions. These model-based analyses identify critical areas of uncertainty for multivariate predictions of future ecosystem response, and underscore the importance of long term field experiments for the evaluation of acclimation and growth under complex environmental scenarios. [source]


Patterns of rhizosphere carbon flux in sugar maple (Acer saccharum) and yellow birch (Betula allegheniensis) saplings

GLOBAL CHANGE BIOLOGY, Issue 6 2005
Richard P. Phillips
Abstract Despite its importance in the terrestrial C cycle rhizosphere carbon flux (RCF) has rarely been measured for intact root,soil systems. We measured RCF for 8-year-old saplings of sugar maple (Acer saccharum) and yellow birch (Betula allegheniensis) collected from the Hubbard Brook Experimental Forest (HBEF), NH and transplanted into pots with native soil horizons intact. Five saplings of each species were pulse labeled with 13CO2 at ambient CO2 concentrations for 4,6 h, and the 13C label was chased through rhizosphere and bulk soil pools in organic and mineral horizons for 7 days. We hypothesized yellow birch roots would supply more labile C to the rhizosphere than sugar maple roots based on the presumed greater C requirements of ectomycorrhizal roots. We observed appearance of the label in rhizosphere soil of both species within the first 24 h, and a striking difference between species in the timing of 13C release to soil. In sugar maple, peak concentration of the label appeared 1 day after labeling and declined over time whereas in birch the label increased in concentration over the 7-day chase period. The sum of root and rhizomicrobial respiration in the pots was 19% and 26% of total soil respiration in sugar maple and yellow birch, respectively. Our estimate of the total amount of RCF released by roots was 6.9,7.1% of assimilated C in sugar maple and 11.2,13.0% of assimilated C in yellow birch. These fluxes extrapolate to 55,57 and 90,104 g C m,2 yr,1 from sugar maple and yellow birch roots, respectively. These results suggest RCF from both arbuscular mycorrhizal and ectomycorrhizal roots represents a substantial flux of C to soil in northern hardwood forests with important implications for soil microbial activity, nutrient availability and C storage. [source]


Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring

GLOBAL CHANGE BIOLOGY, Issue 4 2005
David P. Turner
Abstract Operational monitoring of global terrestrial gross primary production (GPP) and net primary production (NPP) is now underway using imagery from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Evaluation of MODIS GPP and NPP products will require site-level studies across a range of biomes, with close attention to numerous scaling issues that must be addressed to link ground measurements to the satellite-based carbon flux estimates. Here, we report results of a study aimed at evaluating MODIS NPP/GPP products at six sites varying widely in climate, land use, and vegetation physiognomy. Comparisons were made for twenty-five 1 km2 cells at each site, with 8-day averages for GPP and an annual value for NPP. The validation data layers were made with a combination of ground measurements, relatively high resolution satellite data (Landsat Enhanced Thematic Mapper Plus at ,30 m resolution), and process-based modeling. There was strong seasonality in the MODIS GPP at all sites, and mean NPP ranged from 80 g C m,2 yr,1 at an arctic tundra site to 550 g C m,2 yr,1 at a temperate deciduous forest site. There was not a consistent over- or underprediction of NPP across sites relative to the validation estimates. The closest agreements in NPP and GPP were at the temperate deciduous forest, arctic tundra, and boreal forest sites. There was moderate underestimation in the MODIS products at the agricultural field site, and strong overestimation at the desert grassland and at the dry coniferous forest sites. Analyses of specific inputs to the MODIS NPP/GPP algorithm , notably the fraction of photosynthetically active radiation absorbed by the vegetation canopy, the maximum light use efficiency (LUE), and the climate data , revealed the causes of the over- and underestimates. Suggestions for algorithm improvement include selectively altering values for maximum LUE (based on observations at eddy covariance flux towers) and parameters regulating autotrophic respiration. [source]