Full Activity (full + activity)

Distribution by Scientific Domains


Selected Abstracts


Recombinant expression of an insulin-like peptide 3 (INSL3) precursor and its enzymatic conversion to mature human INSL3

FEBS JOURNAL, Issue 18 2009
Xiao Luo
Insulin-like peptide 3 (INSL3), which is primarily expressed in the Leydig cells of the testes, is a member of the insulin superfamily of peptide hormones. One of its primary functions is to initiate and mediate descent of the testes of the male fetus via interaction with its G protein-coupled receptor, RXFP2. Study of the peptide has relied upon chemical synthesis of the separate A- and B-chains and subsequent chain recombination. To establish an alternative approach to the preparation of human INSL3, we designed and recombinantly expressed a single-chain INSL3 precursor in Escherichia coli cells. The precursor was solubilized from the inclusion body, purified almost to homogeneity by immobilized metal-ion affinity chromatography and refolded efficiently in vitro. The refolded precursor was subsequently converted to mature human INSL3 by sequential endoproteinase Lys-C and carboxypeptidase B treatment. CD spectroscopic analysis and peptide mapping showed that the refolded INSL3 possessed an insulin-like fold with the expected disulfide linkages. Recombinant human INSL3 demonstrated full activity in stimulating cAMP activity in RXFP2-expressing cells. Interestingly, the activity of the single-chain precursor was comparable with that of the mature two-chain INSL3, suggesting that the receptor-binding region within the mid- to C-terminal of B-chain is maintained in an active conformation in the precursor. This study not only provides an efficient approach for mature INSL3 preparation, but also resulted in the acquisition of a useful single-chain template for additional structural and functional studies of the peptide. [source]


PURIFICATION AND CHARACTERIZATION OF BACTERIOCIN FROM WEISSELLA PARAMESENTEROIDES DFR-8, AN ISOLATE FROM CUCUMBER (CUCUMIS SATIVUS)

JOURNAL OF FOOD BIOCHEMISTRY, Issue 5 2010
AJAY PAL
ABSTRACT Bacteriocin from Weissella paramesenteroides DFR-8 isolated from cucumber (Cucumis sativus) was purified by using only two steps, viz., pH-mediated cell adsorption,desorption method and gel permeation chromatography. A single peak observed in the purity check by analytical Reverse Phase-High Performance Liquid Chromatography (Waters 600 analytical HPLC system, Milford, MA) and a single band (molecular weight,3.74 kDa) shown on SDS-PAGE analysis strongly indicated the homogeneity of the bacteriocin preparation. Treatment with proteolytic enzymes abolished the antimicrobial activity indicating the proteinaceous nature of bacteriocin. The purified bacteriocin exhibited a broad inhibitory spectrum against foodborne pathogens and spoilage microorganisms, including gram-negative bacteria such as Salmonella typhimurium, Vibrio parahaemolyticus, Aeromonas hydrophila and Listeria monocytogenes. Response surface methodology was employed to study the interactive effect of temperature and pH on bacteriocin activity, and a regression equation was developed. The bacteriocin retained full activity after storage at,20C for 90 days, while partial and complete activity loss was observed when stored at 4 and 37C, respectively. PRACTICAL APPLICATION In recent years, bacteriocins of lactic acid bacteria have gained much attention as food biopreservatives because of their origin from generally regarded as safe organisms. In spite of various bacteriocins studied worldwide, studies on bacteriocins of Weissella paramesenteroides remain rare. The present work involves the purification of bacteriocin up to absolute homogeneity from W. paramesenteroides, an isolate first time reported from cucumber (Cucumis sativus). The purified bacteriocin (molecular weight ,3.74 kDa) was found to inhibit a large number of foodborne pathogens, including Listeria monocytogenes, which is resistant to commercially available bacteriocin, i.e., nisin. The application of central composite rotatable design enabled us to design a regression equation from which the residual activity of bacteriocin can be predicted at any given conditions of temperature and pH within the experimental domain. The broad inhibitory spectrum and thermostability of bacteriocin suggest its potential application in food preservation. [source]


Structure,activity relationship of an antibacterial peptide, maculatin 1.1, from the skin glands of the tree frog, Litoria genimaculata

JOURNAL OF PEPTIDE SCIENCE, Issue 7 2004
Takuro Niidome
Abstract Maculatin 1.1 (Mac) is a cationic antibacterial peptide isolated from the dorsal glands of the tree frog, Litoria genimaculata, and has a sequence of GLFGVLAKVAAHVVPAIAEHF-NH2. A short peptide lacking the N -terminal two residues of Mac was reported to have no activity. To investigate the structure,activity relationship in detail, several analogs and related short peptides of Mac were synthesized. CD measurement showed that all the peptides took more or less an ,-helical structure in the presence of anionic lipid vesicles. Analogs which are more basic than Mac had strong antibacterial and hemolytic activities, while short peptides lacking one or two terminal residues exhibited weak or no activity. Outer and inner membrane permeabilization activities of the peptides were also reduced with shortening of the peptide chain. These results indicate that the entire chain length of Mac is necessary for full activity, and the basicity of the peptides greatly affects the activity. Copyright © 2004 European Peptide Society and John Wiley & Sons, Ltd. [source]


Stability of hydroperoxide lyase activity from Amaranthus tricolor (Amaranthus mangostanus L.) leaves: influence of selected additives

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 5 2010
Zhen Long
Abstract BACKGROUND: Hydroperoxide lyase (HPL) has potential value for the flavour additive industry. Currently, the production and application of HPL suffer from stability problems. The objective of this study was to investigate the stabilisation of HPL preparation from Amaranthus tricolor leaves by the addition of selected chemical additives. RESULTS:Amaranthus tricolor leaves were identified as a particularly rich source of 13-HPL activity. The addition of 100 g L,1 sucrose and trehalose to microsomal HPL prior to lyophilisation could retain nearly 100% enzymatic activity, compared to only 20% for the lyophilised control. The lyophilised microsomal HPL containing sucrose maintained full activity for even 40 days storage at , 20 °C. For HPL solution, glycerol was effective for long-term stability at , 20 °C. Moreover, poyols (sucrose and trehalose) and amino acid (glycine) enhanced the thermostability of HPL, while KCl and polyol mannitol decreased the thermostability of HPL. CONCLUSION: The flavour-producing enzyme HPL, found in the leaves of Amaranthus tricolor, was stabilised by the addition of chemical additives. Copyright © 2010 Society of Chemical Industry [source]


Identification of key residues involved in mediating the in vivo anti-tumor/anti-endothelial activity of Alphastatin

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 4 2007
C. A. STATON
Summary., Background :,We have recently shown that Alphastatin, a 24-amino-acid peptide (ADSGEGDFLAEGGGVRGPRVVERH) derived from human fibrinogen has anti-endothelial properties in vitro and in vivo. Objectives:, The aim of this study was to determine the activity of a terminally modified (stabilized) form of Alphastatin in vitro and in vivo and to identify the key residues required for this activity. Methods:, The in vitro activity of modified Alphastatin, truncates and mutants was determined by endothelial cell (HuDMEC) tubule formation and migration. Active peptides were then assessed in vivo using syngeneic murine subcutaneous 4T1 mammary carcinomas. Results:, Modified Alphastatin-inhibited HuDMEC migration and tubule formation in response to multiple growth factors and caused a 45% inhibition in tumor growth when administered intravenously at 0.25 mg kg,1 (three times per week). Intravenous (i.v.) administration proved non-toxic at all doses investigated, whereas oral and intraperitoneal (i.p.) administration demonstrated neither anti-tumor activity nor toxicity. Truncations of Alphastatin revealed an 11-amino-acid peptide (DFLAEGGGVRG), termed AHN419, which inhibited endothelial cell activity in vitro; however, intravenous AHN419 caused a non-significant growth inhibition in vivo. Single amino acid substitutions to alanine along the entire length of Alphastatin indicated that additional residues outside the AHN419 sequence were required for full activity. Conclusions:, Terminal modification of Alphastatin altered the in vivo efficacy and these studies suggest that a hydrophobic cluster (Phe8, Leu9, Ala10 and Val15) is essential for the biological activity, but additional residues, including Ser3-Gly14, Pro18-Val20 and Arg23 are required for full inhibitory activity of Alphastatin. [source]


Engineering antibody fragments to fold in the absence of disulfide bonds

PROTEIN SCIENCE, Issue 2 2009
Min Jeong Seo
Abstract Disulfide bonds play a critical role in the stabilization of the immunoglobulin ,-sandwich sandwich. Under reducing conditions, such as those that prevail in the cytoplasm, disulfide bonds do not normally form and as a result most antibodies expressed in that compartment (intrabodies) accumulate in a misfolded and inactive state. We have developed a simple method for the quantitative isolation of antibody fragments that retain full activity under reducing conditions from large mutant libraries. In E. coli, inactivation of the cysteine oxidoreductase DsbA abolishes protein oxidation in the periplasm, which leads to the accumulation of scFvs and other disulfide-containing proteins in a reduced form. Libraries of mutant scFvs were tethered onto the inner membrane of dsbA cells and mutants that could bind fluorescently labeled antigen in the reducing periplasm were screened by Anchored Periplasmic Expression (APEx; Harvey et al., Proc Natl Acad Sci USA 2004;101:9193,9198.). Using this approach, we isolated scFv antibody variants that are fully active when expressed in the cytoplasm or when the four Cys residues that normally form disulfides are substituted by Ser residues. [source]