Fuel Gas (fuel + gas)

Distribution by Scientific Domains


Selected Abstracts


Cycle analysis of low and high H2 utilization SOFCs/gas turbine combined cycle for CO2 recovery

ELECTRONICS & COMMUNICATIONS IN JAPAN, Issue 10 2008
Takuya Taniuchi
Abstract Global warming is mainly caused by CO2 emission from thermal power plants, which burn fossil fuel with air. One of the countermeasure technologies to prevent global warming is CO2 recovery from combustion flue gas and the sequestration of CO2 underground or in the ocean. SOFC and other fuel cells can produce high-concentration CO2, because the reformed fuel gas reacts with oxygen electrochemically without being mixed with air, or diluted by N2. Thus, we propose to operate the multistage SOFCs under high utilization of reformed fuel for obtaining high-concentration CO2. In this report, we have estimated the multistage SOFCs' performance considering H2 diffusion and the combined cycle efficiency of multistage SOFC/gas turbine/CO2 recovery power plant. The power generation efficiency of our CO2 recovery combined cycle is 68.5% and the efficiency of conventional SOFC/GT cycle is 57.8% including the CO2 recovery amine process. © 2009 Wiley Periodicals, Inc. Electron Comm Jpn, 91(10): 38,45, 2008; Published online in Wiley InterScience (www.interscience. wiley.com). DOI 10.1002/ecj.10165 [source]


Fundamental study on biomass-fuelled ceramic fuel cell

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 1 2002
B. Zhu
Abstract Recent development in the advanced intermediate temperature (400 to 700°C) ceramic fuel cell (CFC) research brings up feasibility and new opportunity to develop innovative biomass-fuelled CFC technology. This work focuses on fundamentals of the biomass-fuelled CFCs based on available biofuel resources through thermochemical conversion technologies. Both real producer gas from biomass gasification and imitative compounded gas were used as the fuel to operate the CFCs in the biomass CFC testing station. The composition of the fuel gas was varied in a wide range of practices of the present conversion technology both in KTH and Shandong Institute of Technology (SDIT). CFC performances were achieved between 100 and 700 mW cm,2 at 600,800°C corresponding to various gas compositions. A high performance close to 400 mW cm,2 was obtained at 600°C for the gas with the composition of H2 (50 per cent)+CO (15 per cent)+CO2 (15 per cent)+N2 (20 per cent) and more than 600 mW cm,2 for the H2 (55 per cent)+CO (28 per cent)+CO2 (17 per cent) at 700°C. This paper presents the experimental results and discusses the fundamentals and future potentiality on the biomass fuelled CFCs. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Carbon monoxide poisoning of proton exchange membrane fuel cells

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 8 2001
J. J. Baschuk
Abstract Proton exchange membrane fuel cell (PEMFC) performance degrades when carbon monoxide (CO) is present in the fuel gas; this is referred to as CO poisoning. This paper investigates CO poisoning of PEMFCs by reviewing work on the electrochemistry of CO and hydrogen, the experimental performance of PEMFCs exhibiting CO poisoning, methods to mitigate CO poisoning and theoretical models of CO poisoning. It is found that CO poisons the anode reaction through preferentially adsorbing to the platinum surface and blocking active sites, and that the CO poisoning effect is slow and reversible. There exist three methods to mitigate the effect of CO poisoning: (i) the use of a platinum alloy catalyst, (ii) higher cell operating temperature and (iii) introduction of oxygen into the fuel gas flow. Of these three methods, the third is the most practical. There are several models available in the literature for the effect of CO poisoning on a PEMFC and from the modeling efforts, it is clear that small CO oxidation rates can result in much increased performance of the anode. However, none of the existing models have considered the effect of transport phenomena in a cell, nor the effect of oxygen crossover from the cathode, which may be a significant contributor to CO tolerance in a PEMFC. In addition, there is a lack of data for CO oxidation and adsorption at low temperatures, which is needed for detailed modeling of CO poisoning in PEMFCs. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Accurate correlations to estimate refinery fuel gas, natural gas, and fuel oil CO2 emission factors and its uncertainty

AICHE JOURNAL, Issue 9 2010
Esteban F. Márquez-Riquelme
Abstract The quantification of Greenhouse Gas (GHG) inventories and its associated uncertainty is a relevant activity often requested by authorities. Accurate methods to calculate both inventories and the involved uncertainty are convenient for close monitoring purposes. Using Monte Carlo simulations, correlations of high accuracy between emission factors (EFs), lower heating value (LHV), and density were built for refinery fuel gas, natural gas and fuel/residual oil. In all cases, the data generated by the simulations also served the purpose of building correlations for upper and lower bounds of the EF that can be readily used to estimate the EF estimation uncertainty. The correlations were tested against actual refinery data and the results show that more accurate estimations were obtained compared with EF obtained from laboratory composition methods and from methods that estimate EF as proportional to LHV only. In the case of fuel and residual oils, the correlations developed are a function of LHV only but were improved by using a cubic polynomial. The calculation of upper and lower bounds for EF offer a convenient method to estimate EF uncertainties that are required in official GHG emissions inventory calculations. In conclusion, in addition to LHV, the use of one additional readily available fuel property, namely fuel density is sufficient to reduce uncertainty of estimation of GHG (in this case CO2) from combustion to acceptable levels. © 2010 American Institute of Chemical Engineers AIChE J, 2010 [source]