Forest Floor (forest + floor)

Distribution by Scientific Domains
Distribution within Life Sciences

Selected Abstracts

Litter Decomposition Within the Canopy and Forest Floor of Three Tree Species in a Tropical Lowland Rain forest, Costa Rica

BIOTROPICA, Issue 3 2010
Catherine L. Cardelús
ABSTRACT The rain forest canopy hosts a large percentage of the world's plant biodiversity, which is maintained, in large part, by internal nutrient cycling. This is the first study to examine the effects of site (canopy, forest floor) and tree species (Dipteryx panamensis, Lecythis ampla, Hyeronima alchorneoides) on decay rates of a common substrate and in situ leaf litter in a tropical forest in Costa Rica. Decay rates were slower for both substrates within the canopy than on the forest floor. The slower rate of mass loss of the common substrate in the canopy was due to differences in microclimate between sites. Canopy litter decay rates were negatively correlated with litter lignin:P ratios, while forest floor decay rates were negatively correlated with lignin concentrations, indicating that the control of litter decay rates in the canopy is P availability while that of the forest floor is carbon quality. The slower cycling rates within the canopy are consistent with lower foliar nutrient concentrations of epiphytes compared with forest floor-rooted plants. Litter decay rates, but not common substrate decay rates, varied among tree species. The lack of variation in common substrate decay among tree species eliminated microclimatic variation as a possible cause for differences in litter decay and points to variation in litter quality, nutrient availability and decomposer community of tree species as the causal factors. The host tree contribution to canopy nutrient cycling via litter quality and inputs may influence the quality and quantity of canopy soil resources. Abstract in Spanish is available at [source]

Arthropod Abundance and Diversity in a Lowland Tropical Forest Floor in Panama: The Role of Habitat Space vs.

BIOTROPICA, Issue 2 2010
Nutrient Concentrations
ABSTRACT Tropical forest floor characteristics such as depth and nutrient concentrations are highly heterogeneous even over small spatial scales and it is unclear how these differences contribute to patchiness in forest floor arthropod abundance and diversity. In a lowland tropical forest in Panama we experimentally increased litter standing crop by removing litter from five plots (L,) and adding it to five other plots (L+); we had five control plots. After 32 mo of treatments we investigated how arthropod abundance and diversity were related to differences in forest floor physical (mass, depth, water content) and chemical properties (pH, nutrient concentrations). Forest floor mass and total arthropod abundance were greater in L+ plots compared with controls. There were no treatment differences in nutrient concentrations, pH or water content of the organic horizons. Over all plots, the mass of the fermentation horizon (Oe) was greater than the litter horizon (Oi); arthropod diversity and biomass were also greater in the Oe horizon but nutrient concentrations tended to be higher in the Oi horizon. Arthropod abundance was best explained by forest floor mass, while arthropod diversity was best explained by phosphorus, calcium and sodium concentrations in the Oi horizon and by phosphorus concentrations in the Oe horizon. Differences in arthropod community composition between treatments and horizons correlated with phosphorus concentration and dry mass of the forest floor. We conclude that at a local scale, arthropod abundance is related to forest floor mass (habitat space), while arthropod diversity is related to forest floor nutrient concentrations (habitat quality). Abstract in Spanish is available at [source]

Differences in litter mass change mite assemblage structure on a deciduous forest floor

ECOGRAPHY, Issue 6 2006
Graham H. R. Osler
Few mechanisms that determine the assemblage structure of mites have been identified. Whilst the relative abundance of soil fauna is known to change with humus form, the degree to which the quantity of litter inputs play a part in these changes has not been investigated. We tested the response of oribatid and mesostigmatid mites in litter and soil layers to increasing levels of birch Betula pubescens litter to test whether litter mass could affect the mite assemblage. Six litter treatments (1, 2, 4, 8 and 12×natural litter mass and complete litter removal) were established in November 2004 and the soil and litter communities sampled in October 2005. Species composition of oribatids was distinct for the soil and litter. There was no apparent effect of increasing litter mass on the soil mite assemblage. In the litter layer, the number of oribatids g,1 of litter showed a strong negative relationship with increasing litter mass whilst the number of mesostigmatids g,1 of litter was unresponsive to litter mass. Hence, the relative abundance of these two groups altered with increasing litter mass. The response of the oribatid groups Oppiidae and Poronota followed this negative relationship with litter mass but Phthiracaridae appeared less affected. Consequently, there was a subtle shift in the relative abundance of these groups with increasing litter mass. Our results demonstrate that oribatids as a whole and within groups respond in a predictable manner to increases in litter mass whilst mesostigmatids are unresponsive. Whilst there are undoubtedly biological and physical aspects that vary with litter mass, litter mass itself, is able to explain some patterns in the assemblage of oribatid mites. [source]

Inter- and intraspecific variation of stemflow production from Fagus grandifolia Ehrh. (American beech) and Liriodendron tulipifera L. (yellow poplar) in relation to bark microrelief in the eastern United States,

ECOHYDROLOGY, Issue 1 2010
J. Toland Van Stan II
Abstract Stemflow is a spatially concentrated hydrologic input at the tree base. Prior work has documented the differential effects of stemflow from a wide range of plant species on ecohydrological processes, such as the alteration of soil pH and spatial patterning of understory vegetation. No known work has coupled stemflow yield with high resolution measurements of bark microrelief that definitively ascribe differential stemflow yield to bark microrelief. As such, our research objectives were to: (1) correlate inter- and intraspecific variation in stemflow yield to a quantitative bark microrelief scale and (2) compare and contrast stemflow for two co-occurring deciduous species,Fagus grandifolia Ehrh. (American beech) and Liriodendron tulipifera L. (yellow poplar). Using a newly developed instrument to measure bark microrelief, namely the LaserBarkÔ automated tree measurement system, in combination with an 11-month stemflow database for a broadleaved deciduous forest in eastern North America, it was found that bark microrelief values significantly differed between the two species [P = 0·000, F (1,19) = 49·32]. Funneling ratios [P = 0·000, H (1, 990) = 339·20] and stemflow generation [P = 0·000, H (1, 990) = 146·75] also significantly differed between the two species. Our results indicate that bark microrelief exerts a considerable effect on stemflow yield from F. grandifolia and L. tulipifera, possibly affecting water and solute flux to the forest floor. Copyright © 2009 John Wiley & Sons, Ltd. [source]

Dung beetles in a Central Amazonian rainforest and their ecological role as secondary seed dispersers

Ellen Andresen
Abstract 1. The role of several factors that affect the composition of the dung beetle assemblages in an Amazonian rainforest was quantified, together with the effect of these factors on the role that dung beetles play as secondary seed dispersers. 2. A total of 61 dung beetle species was captured during 3360 h of trapping. During nocturnal trapping periods, more dung beetles, of larger mean size, and more species were captured per trap than during diurnal trapping periods. 3. During the rainy season, more dung beetle species were captured per trap than during the dry season, but the number of individuals and their mean size did not vary between seasons. 4. Bait size had a significant effect on the mean number of beetles and mean number of species but not on mean beetle size. As bait size increased from 5, 10, 25, to 50 g, more beetles and more species were captured per trap. 5. Between 6 and 73% of plastic beads, used as seed mimics, were buried by dung beetles at depths that ranged from 0.5 to 7 cm. Both the proportion of beads buried and burial depth decreased with increasing bead size, and increased with increasing amounts of dung surrounding each bead (5, 10, and 25 g). 6. The proportion of buried seeds for three species varying in size between 5 and 27 mm, increased with increasing dung beetle size, using beetles of seven sizes, varying between 10 and 25 mm. 7. Seeds surrounded by dung were buried more often and more deeply when placed on the forest floor during the late afternoon than when placed during the early morning. Seeds were also buried more often when placed on the forest floor during the rainy season than when placed during the dry season, but season had no effect on burial depth. 8. Forests in Central Amazonia hold a rich dung beetle community that plays an active role in secondary seed dispersal, and consequently in plant regeneration. The interaction between seeds and beetles is complex because it is affected by many factors. [source]

Microhabitat and rhythmic behavior of tiger beetle Callytron yuasai okinawense larvae in a mangrove forest in Japan

Abstract Mangrove forests are regularly flooded by tides at intervals of approximately 12.4 h (tidal rhythm). Larvae of the tiger beetle Callytron yuasai okinawense in a mangrove forest made shallow burrows in mounds up to 1 m in height constructed by the mud lobster Thalassina anomala. No larval burrows were observed on the forest floor, which was very muddy even during low tide. Some larvae plugged the burrow openings before they were submerged at high tide. The mean interval between consecutive burrow plugging events was 12.37 h, which is similar to the period of tidal cycles. Nine out of 30 larvae plugged the burrow openings even when the burrows did not become submerged. Plugging behavior may be governed by an endogenous biological clock, or may be a response to exogenous information about tidal level (e.g. moisture seeping through the ground). [source]

Detection of the Sexual Identity of Conspecifics through Volatile Chemical Signals in a Territorial Salamander

ETHOLOGY, Issue 3 2007
Benjamin J. Dantzer
Territorial red-backed salamanders (Plethodon cinereus) have been shown to use nonvolatile chemical signals in both territorial defense and to convey a variety of information to conspecifics. We investigated whether or not red-backed salamanders could determine the sexual identity of conspecifics through volatile chemical signals, and we explored their use in the context of territorial defense. We exposed male and female red-backed salamanders to four experimental treatments (i.e. filter papers that had been scent marked by male or female conspecifics for 1 and 5 d) and two control treatments (i.e. unscented filter papers for 1 and 5 d tests). The focal salamanders were prevented from physically accessing the scent marked filter papers and, presumably, some of the substrate scent marks had volatile components that were detected and interpreted by the focal salamanders. Both male and female red-backed salamanders spent significantly more time in threat displays when they were exposed to volatile chemical signals from same-sex conspecifics than they did toward similar signals from opposite-sex conspecifics. A similar statistical pattern was observed for the amount of chemosensory sampling exhibited by focal red-backed salamanders. From these results, we infer that red-backed salamanders can determine the sexual identity of conspecifics through volatile chemical signals, some of which may be used in territorial defense. Further, such airborne pheromones may influence the spatial organization of salamander territories on the forest floor. [source]

Gross rates of ammonification and nitrification at a nitrogen-saturated spruce (Picea abies (L.)Karst.) stand in southern Germany

P. Rosenkranz
We investigated the magnitudes of temporal and spatial variabilities of gross ammonification and nitrification, in an N-saturated temperate forest ecosystem. Forest soil gross ammonification, gross nitrification and heterotrophic soil respiration were measured in the forest floor and uppermost mineral layer over a period of 3 years. Total annual gross fluxes for the organic layer and uppermost mineral horizon (0,4 cm) were in the range of 800,980 kg N ha,1 year,1 for gross ammonification and 480,590 kg N ha,1 year,1 for gross nitrification. Annual heterotrophic soil respiration was 8000,8900 kg C ha,1 year,1. Highest soil C and N turnover rates occurred in summer, and a consistent pattern was observed throughout the observation period, with highest values for plots located at a clear-cut area and lowest values for plots located at an unmanaged, approximately 100-year-old, spruce control site. Soil moisture, soil temperature and substrate availability accounted for most of the observed variability of C and N turnover rates. Because gross rates of inorganic N production were more than an order of magnitude larger than ecosystem N losses along hydrological and gaseous pathways, our study underlines the importance of internal microbial N turnover processes for ecosystem N cycling and retention. [source]

Dissolved organic phosphorus and sulphur as influenced by sorptive interactions with mineral subsoil horizons

K. KaiserArticle first published online: 6 JAN 200
Summary This study tested the hypothesis that, like dissolved organic nitrogen (N), dissolved organic phosphorus (P) and sulphur (S) are more mobile in soil than is organic carbon (C). To do so, I compared the sorption of organic P and S to subsoil materials with that of organic C. Soil samples were equilibrated with water-soluble organic matter from the forest floor at pH 4 and in the equilibrium solutions organic C, P, and S, and their distributions between the hydrophilic and hydrophobic fraction were determined. Sorption of C within the organic matter did not differ from that of P and S. However, the hydrophilic fraction contained the vast majority of P and S and sorbed far less than the hydrophobic fraction. So the overall retention of organic P and S was smaller than that of organic C. This result suggested that dissolved organic matter is more important in the loss of plant nutrients than in the release of C from soil. [source]

The effect of organic acids on base cation leaching from the forest floor under six North American tree species

F. A. Dijkstra
Summary Organic acidity and its degree of neutralization in the forest floor can have large consequences for base cation leaching under different tree species. We investigated the effect of organic acids on base cation leaching from the forest floor under six common North American tree species. Forest floor samples were analysed for exchangeable cations and forest floor solutions for cations, anions, simple organic acids and acidic properties. Citric and lactic acid were the most common of the acids under all species. Malonic acid was found mainly under Tsuga canadensis (hemlock) and Fagus grandifolia (beech). The organic acids were positively correlated with dissolved organic carbon and contributed significantly to the organic acidity of the solution (up to 26%). Forest floor solutions under Tsuga canadensis contained the most dissolved C and the most weak acidity among the six tree species. Under Tsuga canadensis we also found significant amounts of strong acidity caused by deposition of sulphuric acid from the atmosphere and by strong organic acids. Base cation exchange was the most important mechanism by which acidity was neutralized. Organic acids in solution from Tsuga canadensis, Fagus grandifolia, Acer rubrum (red maple) and Quercus rubra (red oak) were hardly neutralized while much more organic acidity was neutralized for Acer saccharum (sugar maple) and Fraxinus americana (white ash). We conclude that quantity, nature and degree of neutralization of organic acids differ among the different tree species. While the potential for base cation leaching with organic acids from the forest floor is greatest under Tsuga canadensis, actual leaching with organic anions is greatest under Acer saccharum and Fraxinus americana under which the forest floor contains more exchangeable cations than does the strongly acidified forest floor under Tsuga canadensis. [source]

Effects of metals and pH on in vitro growth of Armillaria ostoyae and other root and butt rot fungi of red spruce

P. M. Wargo
Armillaria ostoyae, Perenniporia subacida, Resinicium bicolor and Scytinostroma galactinum, root and butt rot fungi found on red spruce, Picea rubens, were tested, in vitro, for their sensitivity to metals typically found in high elevation forest soils where red spruce grows. Rhizomorph production by A. ostoyae from woody inocula in soils from red spruce stands at three elevations at each of five mountainous sites in the eastern United States was inhibited completely in the mineral soil from all elevations at all sites, and was also reduced significantly in the organic horizon from the upper two elevations at three of the sites. Inhibition was correlated with concentrations of metal ions in the soil. Growth of rhizomorphs into an agar medium containing lead and other heavy metals was inhibited for isolates of A. ostoyae from red spruce, but not for an isolate of Armillaria gallica from sugar maple; aluminium inhibited rhizomorph growth of isolates of both species. Mycelial growth of all four root and butt rot fungi was inhibited by lead, aluminium and other heavy metals depending on the solubility and concentration of metal and pH of the medium; growth inhibition was usually greater at an initial pH of 3.5 than at pH 4.5. Metal ions inhibited radial growth of Armillaria species more than that of the other three fungi. Rhizomorph growth of Armillaria was inhibited more than radial growth. Because local spread of A. ostoyae occurs frequently by means of rhizomorph growth between near roots, increases in lead, aluminium and other metals in the forest floor may contribute to this fungus' scarcity in high elevation soils and reduced incidence of infection at these sites in the eastern United States. [source]

Colonization of beech leaves by two endophytic fungi in northern Japan

N. Sahashi
Summary Leaves of Japanese beech (Fagus crenata) were collected monthly during the vegetation period at five sites in the Tohoku district in Japan to isolate endophytic fungi. Leaves were also collected only once at two additional sites. Two endophytic fungi were dominant, a Discula species and a sterile mycelium. This result strongly suggests that these two fungi are generally associated with leaves of the Japanese beech at different sites. At most sites the isolation frequency of Discula sp. was greatest in June and gradually decreased from July to October whereas the isolation frequency of the sterile mycelium increased during the vegetation period and remained at a high isolation frequency in October. Spores of Discula sp. were released for a very short time in late May, just after the disappearance of the snow cover on the forest floor. These spores may be important for the infection of newly sprouting leaves. [source]

The First Appearance of Cattle in Denmark Occurred 6000 Years Ago: An Effect of Cultural or Climate and Environmental Changes

Nanna Noe-Nygaard
Abstract Stable carbon and nitrogen isotope ratios from bones of contemporaneous Late Atlantic aurochs and early cattle in eastern Denmark are significantly different and provide information on the origin and feeding strategies of the earliest domestic cattle. The data show that the early cattle were feeding on grass right from the beginning 4000 cal. yr BC. In contrast, the youngest aurochs population primarily browsed and grazed from the dense forest floor resulting in rather negative ,13C values measured on bone collagen. The oldest aurochs have similar isotope values to the earlier cattle, whereas the youngest aurochs have similar values to Late Atlantic red deer from the same locality. As eastern Denmark was largely covered by forest, speculations on the origin of the grazing areas are many. The grass may have grown in openings in the forest, at the forest fringe, or more likely on the newly reclaimed coastal land areas exposed by the decreasing rate of eustatic sea-level rise contemporaneously with isostatic uplift, during the Littorina transgressions. The stable isotope values do not indicate that leaf foddering of the early cattle was of importance. [source]

The contribution of bryophytes to the carbon exchange for a temperate rainforest

Evan H. DeLucia
Abstract Bryophytes blanket the floor of temperate rainforests in New Zealand and may influence a number of important ecosystem processes, including carbon cycling. Their contribution to forest floor carbon exchange was determined in a mature, undisturbed podocarp-broadleaved forest in New Zealand, dominated by 100,400-year-old rimu (Dacrydium cupressimum) trees. Eight species of mosses and 13 species of liverworts contributed to the 62% cover of the diverse forest floor community. The bryophyte community developed a relatively thin (depth <30 mm), but dense, canopy that experienced elevated CO2 partial pressures (median 46.6 Pa immediately below the bryophyte canopy) relative to the surrounding air (median 37.6 Pa at 100 mm above the canopy). Light-saturated rates of net CO2 exchange from 14 microcosms collected from the forest floor were highly variable; the maximum rate of net uptake (bryophyte photosynthesis , whole-plant respiration) per unit ground area at saturating irradiance was 1.9 ,mol m,2 s,1 and in one microcosm, the net rate of CO2 exchange was negative (respiration). CO2 exchange for all microcosms was strongly dependent on water content. The average water content in the microcosms ranged from 1375% when fully saturated to 250% when air-dried. Reduction in water content across this range resulted in an average decrease of 85% in net CO2 uptake per unit ground area. The results from the microcosms were used in a model to estimate annual carbon exchange for the forest floor. This model incorporated hourly variability in average irradiance reaching the forest floor, water content of the bryophyte layer, and air and soil temperature. The annual net carbon uptake by forest floor bryophytes was 103 g m,2, compared to annual carbon efflux from the forest floor (bryophyte and soil respiration) of ,1010 g m,2. To put this in perspective of the magnitude of the components of CO2 exchange for the forest floor, the bryophyte layer reclaimed an amount of CO2 equivalent to only about 10% of forest floor respiration (bryophyte plus soil) or ,11% of soil respiration. The contribution of forest floor bryophytes to productivity in this temperate rainforest was much smaller than in boreal forests, possibly because of differences in species composition and environmental limitations to photosynthesis. Because of their close dependence on water table depth, the contribution of the bryophyte community to ecosystem CO2 exchange may be highly responsive to rapid changes in climate. [source]

Modelling night-time ecosystem respiration by a constrained source optimization method

Chun-Ta Lai
Abstract One of the main challenges to quantifying ecosystem carbon budgets is properly quantifying the magnitude of night-time ecosystem respiration. Inverse Lagrangian dispersion analysis provides a promising approach to addressing such a problem when measured mean CO2 concentration profiles and nocturnal velocity statistics are available. An inverse method, termed ,Constrained Source Optimization' or CSO, which couples a localized near-field theory (LNF) of turbulent dispersion to respiratory sources, is developed to estimate seasonal and annual components of ecosystem respiration. A key advantage to the proposed method is that the effects of variable leaf area density on flow statistics are explicitly resolved via higher-order closure principles. In CSO, the source distribution was computed after optimizing key physiological parameters to recover the measured mean concentration profile in a least-square fashion. The proposed method was field-tested using 1 year of 30-min mean CO2 concentration and CO2 flux measurements collected within a 17-year-old (in 1999) even-aged loblolly pine (Pinus taeda L.) stand in central North Carolina. Eddy-covariance flux measurements conditioned on large friction velocity, leaf-level porometry and forest-floor respiration chamber measurements were used to assess the performance of the CSO model. The CSO approach produced reasonable estimates of ecosystem respiration, which permits estimation of ecosystem gross primary production when combined with daytime net ecosystem exchange (NEE) measurements. We employed the CSO approach in modelling annual respiration of above-ground plant components (c. 214 g C m,2 year,1) and forest floor (c. 989 g C m,2 year,1) for estimating gross primary production (c. 1800 g C m,2 year,1) with a NEE of c. 605 g C m,2 year,1 for this pine forest ecosystem. We conclude that the CSO approach can utilise routine CO2 concentration profile measurements to corroborate forest carbon balance estimates from eddy-covariance NEE and chamber-based component flux measurements. [source]

Estimation of suspended sediment sources using 137Cs and 210Pbex in unmanaged Japanese cypress plantation watersheds in southern Japan

Shigeru Mizugaki
Abstract To analyse suspended sediment sources in unmanaged Japanese cypress plantation watersheds, field measurements and fingerprinting of the suspended sediment was conducted in the Shimanto River basin in southern Japan. For sediment fingerprinting, 137Cs and 210Pbex were detected by means of gamma-ray spectrometry in the surface soil of the forest floor, stream bank and truck trail and mobilized sediment by interrill erosion. The 137Cs and 210Pbex activities associated with the forest floor materials were considerably higher than those of the stream bank and truck trail. The 137Cs and 210Pbex activities associated with the suspended sediment were found to vary with the sampling period. Evidently, the suspended sediment can comprise materials generated from the forest floor by interrill erosion and those from the truck trail and/or stream bank. The multivariate sediment-mixing model using 137Cs and 210Pbex showed that the contribution of the forest floor varied periodically, ranging from 23,56% in the Hinoki 156 subwatershed and from 18,85% in the Hinoki 155 subwatershed. The difference in the average contribution of the forest floor between Hinoki 156 (46%) and Hinoki 155 (69%) may relate to the presence of truck trail networks in the watershed. The truck trail network can play roles of sediment source and pathway for sediment from forest floor to stream channel due to the concentrated overland flow on the truck trail during heavy rainfall events. These results indicate that the forest floor should be recognized as a major source of suspended sediment in unmanaged Japanese cypress plantation watersheds. Copyright © 2008 John Wiley & Sons, Ltd. [source]

Assessing factors that influence spatial variations in duff moisture

L. D. Raaflaub
Abstract Patterns and spatial variations in the moisture of the decomposing organic matter on the forest floor (the duff) of a montane forest were analysed in an effort to determine the primary factors shaping these patterns. Above and below canopy meteorological conditions were monitored to determine the influence of canopy cover on duff moisture. The spatial and temporal distributions of duff moisture were assessed through daily duff moisture measurements collected at regular intervals in ten 10 × 10 m plots representing a variety of canopy types and densities. Meteorological conditions ranged from very wet to very dry and resulted in duff moisture variations that were more pronounced during wet periods than in extended periods of drying. Investigations on the influence of canopy type, tree density, and tree proximity on duff moisture patterns indicated that canopy type and tree proximity are the most important factors affecting duff moisture. Interception seems to be the primary controller of duff moisture patterns with an influence at the centimetre scale. Copyright © 2008 John Wiley & Sons, Ltd. [source]

Movement trajectories and habitat partitioning of small mammals in logged and unlogged rain forests on Borneo

Summary 1Non-volant animals in tropical rain forests differ in their ability to exploit the habitat above the forest floor and also in their response to habitat variability. It is predicted that specific movement trajectories are determined both by intrinsic factors such as ecological specialization, morphology and body size and by structural features of the surrounding habitat such as undergrowth and availability of supportive structures. 2We applied spool-and-line tracking in order to describe movement trajectories and habitat segregation of eight species of small mammals from an assemblage of Muridae, Tupaiidae and Sciuridae in the rain forest of Borneo where we followed a total of 13 525 m path. We also analysed specific changes in the movement patterns of the small mammals in relation to habitat stratification between logged and unlogged forests. Variables related to climbing activity of the tracked species as well as the supportive structures of the vegetation and undergrowth density were measured along their tracks. 3Movement patterns of the small mammals differed significantly between species. Most similarities were found in congeneric species that converged strongly in body size and morphology. All species were affected in their movement patterns by the altered forest structure in logged forests with most differences found in Leopoldamys sabanus. However, the large proportions of short step lengths found in all species for both forest types and similar path tortuosity suggest that the main movement strategies of the small mammals were not influenced by logging but comprised generally a response to the heterogeneous habitat as opposed to random movement strategies predicted for homogeneous environments. 4Overall shifts in microhabitat use showed no coherent trend among species. Multivariate (principal component) analysis revealed contrasting trends for convergent species, in particular for Maxomys rajah and M. surifer as well as for Tupaia longipes and T. tana, suggesting that each species was uniquely affected in its movement trajectories by a multiple set of environmental and intrinsic features. [source]

Biomass allocation and leaf life span in relation to light interception by tropical forest plants during the first years of secondary succession

N. Galia Selaya
Summary 1We related above-ground biomass allocation to light interception by trees and lianas growing in three tropical rain forest stands that were 0.5, 2 and 3-year-old regeneration stages after slash and burn agriculture. 2Stem height and diameter, leaf angle, the vertical distribution of total above-ground biomass and leaf longevity were measured in individuals of three short-lived pioneers (SLP), four later successional species (LS) and three lianas (L). Daily light capture per individual (,d) was calculated with a canopy model. Mean daily light interception per unit leaf area (,area), leaf mass (,leaf mass) and above-ground mass (,mass) were used as measures of instantaneous efficiency of biomass use for light capture. 3With increasing stand age, vegetation height and leaf area index increased while light at the forest floor declined from 34 to 5%. The SLP, Trema micanthra and Ochroma pyramidale, dominated the canopy early in succession and became three times taller than the other species. SLP had lower leaf mass fractions and leaf area ratios than the other groups and this difference increased with stand age. 4Over time, the SLP intercepted increasingly more light per unit leaf mass than the other species. Lianas, which in the earliest stage were self-supporting and started climbing later on, gradually became taller at a given mass and diameter than the trees. Yet, they were not more efficient than trees in light interception. 5SLP had at least three-fold shorter leaf life spans than LS and lianas. Consequently, total light interception calculated over the mean life span of leaves (,leaf mass total = ,area × SLAdeath leaves× leaf longevity) was considerably lower for the SLP than for the other groups. 6Synthesis. We suggest that early dominance in secondary forest is associated with a high rate of leaf turnover which in turn causes inefficient long-term use of biomass for light capture, whereas persistence in the shade is associated with long leaf life spans. This analysis shows how inherent tradeoffs in crown and leaf traits drive long-term competition for light, and it presents a conceptual tool to explain why early dominants are not also the long-term dominants. [source]

Below-ground ectomycorrhizal community structure in a recently burned bishop pine forest

P. Grogan
Summary 1,The effects of wildfire ash on ectomycorrhizal (EM) associations were investigated by sampling bishop pine (Pinus muricata, D. Don) seedlings from control and ash-removed plots 1.5 years after a severe fire in a northern Californian P. muricata forest. The below-ground community composition of EM at the site was characterized using molecular techniques (PCR-RFLP and nucleotide sequencing). 2,A total of 30 fungal taxa were observed, many of which differed in their distribution between treatment and control seedlings. However, most of the taxa that were distinctive to either treatment or control seedlings occurred only once across the site, precluding statistical detection of potential ash effects on EM community composition. There were no significant effects of ash removal on plot-level mycorrhizal community richness or diversity, and there were no distinct treatment-related clusters in a principal components analysis. 3,Analysis of the combined data indicated that numbers of fungal taxa per seedling, numbers of successive root depth increments colonized by the same taxon, and distances to neighbouring seedlings colonized by the same taxon, were randomly distributed across the site for the majority of mycorrhizal fungi. These distributional patterns suggest that the post-fire mycorrhizal community structure on P. muricata arose primarily from successful colonization by randomly distributed point-source fungal inocula within the upper mineral soil layer of the forest floor. 4,By comparison with pre-fire studies from similar P. muricata sites nearby, our data indicate that severe wildfire disturbance resulted in marked changes in mycorrhizal community composition, and a sharp increase in the relative biomass of ascomycetous fungi. [source]

Spiders (Araneae) associated with downed woody material in a deciduous forest in central Alberta, Canada

Christopher M. Buddle
Abstract 1,Spiders (Araneae) were collected on and near downed woody material (DWM) in a Populus -dominated forest to determine if spiders utilize wood surfaces, and to ascertain the importance of DWM habitat and wood elevation for spider assemblages. 2,Over 10 000 spiders representing 100 species were collected. Although more spiders were collected on the forest floor, spider diversity was higher in traps located on wood surfaces than on the forest floor, and 11 species were collected more frequently on wood surfaces. 3,Spiders utilized DWM at different stages in their development. Female Pardosa mackenziana (Keyserling) (Lycosidae) carrying egg sacs were caught most often on the surface of DWM, possibly to sun their egg sacs. Additionally, the proportion of immature spiders was higher on the wood surface than on the forest floor. 4,Spiders collected on logs with and without bark were compared to assemblages collected on telephone poles to assess what features of DWM habitat may be important. Web-building species were seldom collected on telephone poles, suggesting that they depend on the greater habitat complexity provided by DWM. In contrast, hunting spiders did not distinguish between telephone poles and logs. 5,Fewer spiders and a less diverse fauna utilized elevated compared to ground-level wood. Additionally, Detrended Correspondence Analysis revealed that the spider community from elevated wood was distinguishable from the spider community from ground-level wood, and from the forest floor spider community. [source]

Effects of experimental acidification and alkalinization on soil and growth and health of Acer saccharum Marsh.

Rock Ouimet
Abstract Experimental application of eight acidifying, neutral, or alkalizer compounds (range: ,16 to 16 kmol ha,1 of acid-neutralizing capacity [ANC]) was realized in two northern hardwood stands having significantly different soil base saturation (BS) (a "poor" and a "rich" site) to assess responses of soil physico-chemical properties, and nutrition, growth, and health of sugar maple (Acer saccharum Marsh.) trees in the short (3 y) and longer term (10 y). The treatments influenced the main indicators of acidity in the forest floor (soil exchangeable-Ca saturation [SCa], BS, exchangeable-acidity saturation [SH+Al], and the SCa/SH+Al ratio) at both sites, their values increasing (decreasing for SH+Al) along the ANC treatment gradient in both the short and longer term, except for pH. Base saturation of the upper 15,cm of the mineral B horizons of soils was influenced at the two sites 10 y after treatment application. Although ANC treatments affected nutrient concentrations of tree foliage in the short term, their effect was no longer detectable after 10 y at the two sites. Growth, however, was strongly related to ANC treatments after 10 y, but only at the poor site. From 1990 to 2000, the basal-area growth rate of trees at the poor site was (mean ± SE) ,0.62 ± 0.28,cm2 y,2 tree,1 for the most negative ANC treatment to +0.90 ± 0.20,cm2 y,2 tree,1 for the most positive ANC treatment. A climatic-stress episode occurring in 1995/96 appeared to accentuate the growth decline of trees subjected to the most negative ANC treatment at the poor site. The experimental results support the hypothesis that atmospheric acid deposition load can cause forest soil base-cation depletion, acidification, and predispose sugar maple to health and growth decline in the longer term in base-cation-poor soils, and that the phenomenon may be reversible by adding alkalizers. [source]

Effects of throughfall and litterfall manipulation on concentrations of methylmercury and mercury in forest-floor percolates

Maria Hojdová
Abstract The forest floor was shown to be an effective sink of atmospherically deposited methylmercury (MeHg) but less for total mercury (Hgtotal). We studied factors controlling the difference in dynamics of MeHg and Hgtotal in the forest floor by doubling the throughfall input and manipulating aboveground litter inputs (litter removal and doubling litter addition) in the snow-free period in a Norway spruce forest in NE Bavaria, Germany, for 14 weeks. The MeHg concentrations in the forest-floor percolates were not affected by any of the manipulation and ranged between 0.03 (Oa horizon) and 0.11 (Oi horizon) ng Hg L,1. The Hgtotal concentrations were largest in the Oa horizon (24 ng Hg L,1) and increased under double litterfall (statistically significant in the Oi horizon). Similarly, concentrations of dissolved organic C (DOC) increased after doubling of litterfall. The concentrations of Hgtotal and DOC correlated significantly in forest-floor percolates from all plots. However, we did not find any effect of DOC on MeHg concentrations. The difference in the coupling of Hgtotal and MeHg to DOC might be one reason for the differences in the mobility of Hg species in forest floors with a lower mobility of MeHg not controlled by DOC. [source]

DOC leaching from a coniferous forest floor: modeling a manipulation experiment,

Edward Tipping
Abstract The DyDOC model simulates the C dynamics of forest soils, including the production and transport of dissolved organic matter (DOM), on the basis of soil hydrology, metabolic processes, and sorption reactions. The model recognizes three main pools of soil C: litter, substrate (an intermediate transformation product), and humic substances. The model was used to simulate the behavior of C in the O horizon of soil under a Norway spruce stand at Asa, Sweden, that had been subjected to experimental manipulations (addition and removal) of above-ground litter inputs and to removal of the Oi and Oe layers. Initially, the model was calibrated using results for the control plots and was able to reproduce the observed total soil C pool and 14C content, DOC flux and DO14C content, and the pool of litter C, together with the assumed content of C in humic substances (20% of the total soil C), and the assumed distribution of DOC between hydrophilic and hydrophobic fractions. The constant describing DOC exchange between micro- and macropores was estimated from short-term variations in DOC concentration. When the calibrated model was used to predict the effects of litter and soil manipulations, it underestimated the additional DOC export (up to 33%) caused by litter addition, and underestimated the 22% reduction in DOC export caused by litter withdrawal. Therefore, an additional metabolic process, the direct conversion of litter to DOC, was added to the model. The addition of this process permitted reasonably accurate simulation of the results of the manipulation experiments, without affecting the goodness-of-fit in the model calibration. The results suggest that, under normal conditions, DOC exported from the Asa forest floor is a mixture of compounds derived from soil C pools with a range of residence times. Approximately equal amounts come from the litter pool (turnover time 4.6 yr), the substrate pool (26 yr), and the humic-substances pool (36 yr). [source]

Phylogenetic similarity and structure of Agaricomycotina communities across a forested landscape

Abstract The Agaricomycotina are a phylogenetically diverse group of fungi that includes both saprotrophic and mycorrhizal species, and that form species , rich communities in forest ecosystems. Most species are infrequently observed, and this hampers assessment of the role that environmental heterogeneity plays in determining local community composition and in driving ,-diversity. We used a combination of phenetic (TRFLP) and phylogenetic approaches [Unifrac and Net Relatedness Index (NRI)] to examine the compositional and phylogenetic similarity of Agaricomycotina communities in forest floor and surface soil of three widely distributed temperate upland forest ecosystems (one, xeric oak , dominated and two, mesic sugar maple dominated). Generally, forest floor and soil communities had similar phylogenetic diversity, but there was little overlap of species or evolutionary lineages between these two horizons. Forest floor communities were dominated by saprotrophic species, and were compositionally and phylogenetically similar in all three ecosystems. Mycorrhizal species represented 30% to 90% of soil community diversity, and these communities differed compositionally and phylogenetically between ecosystems. Estimates of NRI revealed significant phylogenetic clustering in both the forest floor and soil communities of only the xeric oak-dominated forest ecosystem, and may indicate that this ecosystem acts as a habitat filter. Our results suggest that environmental heterogeneity strongly influences the phylogenetic ,-diversity of soil inhabiting Agaricomycotina communities, but has only a small influence on forest floor ,-diversity. Moreover, our results suggest that the strength of community assembly processes, such as habitat filtering, may differ between temperate forest ecosystems. [source]

Patterns and levels of gene flow in Rhododendron metternichii var. hondoense revealed by microsatellite analysis

Yoshiaki Kameyama
Abstract Parentage analysis was conducted to elucidate the patterns and levels of gene flow in Rhododendron metternichii Sieb. et Zucc. var. hondoense Nakai in a 150 × 70 m quadrat in Hiroshima Prefecture, western Japan. The population of R. metternichii occurred as three subpopulations at the study site. Seventy seedlings were randomly collected from each of three 10 × 10 m plots (S1, S2, and S3) on the forest floor of each subpopulation (A1, A2, and A3). Almost all parents (93.8%) of the 70 seedlings were unambiguously identified by using 12 pairs of microsatellite markers. Within the quadrat, adult trees less than 5 m from the centre of the seedling bank (plots S1, S2, and S3) produced large numbers of seedlings. The effects of tree height and distance from the seedling bank on the relative fertilities of adult trees were highly variable among subpopulations because of the differences in population structure near the seedling bank: neither distance nor tree height had any significant effect in subpopulation A1; distance from the seedling bank had a significant effect in subpopulation A2; and tree height had a significant effect in subpopulation A3. Although gene flow within each subpopulation was highly restricted to less than 25 m and gene flow among the three subpopulations was extremely small (0,2%), long-distance gene flow from outside the quadrat reached 50%. This long-distance gene flow may be caused by a combination of topographical and vegetational heterogeneity, differences in flowering phenology, and genetic substructuring within subpopulations. [source]

Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest

Björn D. Lindahl
Summary ,,Our understanding of how saprotrophic and mycorrhizal fungi interact to re-circulate carbon and nutrients from plant litter and soil organic matter is limited by poor understanding of their spatiotemporal dynamics. ,,In order to investigate how different functional groups of fungi contribute to carbon and nitrogen cycling at different stages of decomposition, we studied changes in fungal community composition along vertical profiles through a Pinus sylvestris forest soil. We combined molecular identification methods with 14C dating of the organic matter, analyses of carbon:nitrogen (C:N) ratios and 15N natural abundance measurements. ,,Saprotrophic fungi were primarily confined to relatively recently (< 4 yr) shed litter components on the surface of the forest floor, where organic carbon was mineralized while nitrogen was retained. Mycorrhizal fungi dominated in the underlying, more decomposed litter and humus, where they apparently mobilized N and made it available to their host plants. ,,Our observations show that the degrading and nutrient-mobilizing components of the fungal community are spatially separated. This has important implications for biogeochemical studies of boreal forest ecosystems. [source]

Nested patterns of community assembly in the colonisation of artificial canopy habitats by oribatid mites

OIKOS, Issue 12 2008
Zoë Lindo
An observed species,area relationship (SAR) in assemblages of oribatid mites inhabiting natural canopy habitats (suspended soils) led to an experimental investigation of how patch size, height in canopy and moisture influence the species richness, abundance and community composition of arboreal oribatid mites. Colonisation by oribatid mites on 90 artificial canopy habitats (ACHs) of three sizes placed at each of three heights on the trunks of ten western redcedar trees was recorded over a 1-year period. Fifty-nine oribatid mite species colonised the ACHs, and richness increased with the moisture content and size of the habitat patch. Oribatid mite species richness and abundance, and ACH moisture content decreased with increasing ACH height in the canopy. Patterns in the species richness and community composition of ACHs were non-random and demonstrated a significant nested pattern. Correlations of patch size, canopy height and moisture content with community nestedness suggest that species-specific environmental tolerances combined with the differential dispersal abilities of species contributed to the non-random patterns of composition in these habitats. In line with the prediction that niche-selection filters out species from the regional pool that cannot tolerate environmental harshness, moisture-stressed ACHs in the high canopy had lower community variability than ACHs in the lower canopy. Colonising source pools to ACHs were almost exclusively naturally-occurring canopy sources, but low levels of colonisation from the forest floor were apparent at low heights within the ACH system. We conclude that stochastic dispersal dynamics within the canopy are crucial to understanding oribatid mite community structure in suspended soils, but that the relative importance of stochastic dispersal assembly may be dependent on a strong deterministic element to the environmental tolerances of individual species which drives non-random patterns of community assembly. [source]

Above and below ground impacts of terrestrial mammals and birds in a tropical forest

OIKOS, Issue 4 2008
Amy E. Dunham
Understanding the impact of losing trophic diversity has global significance for managing ecosystems as well as important theoretical implications for community and ecosystem ecology. In several tropical forest ecosystems, habitat fragmentation has resulted in declines and local extinctions of mammalian and avian terrestrial insectivores. To assess the ability of a tropical rainforest community in Ivory Coast to resist perturbation from such loss of trophic diversity, I traced feedbacks in above and below ground communities and measured changes in nutrient levels and herbivory rates in response to an experimental exclosure of avian and mammalian terrestrial insectivores. I present evidence that loss of this functional group may result in increased tree seedling herbivory and altered nutrient regimes through changes in the abundance and guild structure of invertebrates. Exclusion of top predators of the forest floor resulted in increased seedling herbivory rates and macro-invertebrate (>5 mm) densities with strongest effects on herbivorous taxa, spiders and earthworms. Densities of microbivores including Collembola, Acarina and Sciaridae showed the opposite trend as did levels of inorganic phosphorus in the soil. Results were evaluated using path analysis which supported the presence of a top down trophic cascade in the detrital web which ultimately affected turnover of phosphorus, a limiting nutrient in tropical soils. Results illustrate the potential importance of vertebrate predators in both above and belowground food webs despite the biotic diversity and structural heterogeneity of the rainforest floor. [source]

Life-history monographs of Japanese plants.

9: Helonias orientalis (Thunb.) N. Tanaka (Liliaceae)
Abstract The life-history characteristics of Helonias orientalis (Liliaceae) are described. The genus Helonias (Liliaceae), which includes Heloniopsis and Ypsilandra, is one of the representative members of the so-called Arcto-Tertiary Geoflora, with typical disjunct geographical ranges in eastern North America and eastern Asia, including the Japanese Islands to inland China and the Himalayan Mountains. The seasonal growth patterns of this evergreen perennial are most unique, showing different replacement patterns in foliage leaves, which are formed during two different seasons, once in late spring and again in late summer to autumn. Flowering occurs at different times of the year in populations that are located at different elevations. Lowland populations flower in late March to early April, whereas montane and subalpine,alpine populations bear flowers in early to mid-summer, June to August. Another outstanding feature of this species is that it produces tiny plantlets at the tips of the oldest (3-year-old) foliage leaves just before decaying. Survival rates of plantlets (ramets) are obviously much higher than that of the exceedingly minute seedlings (gamets), especially on the dark shady forest floor. Thus, populations in closed woodland habitats are primarily maintained by plantlets, that is, vegetative plantlet formation. The cost of seed production is dramatically higher in the subalpine,alpine populations compared with those of the lowland populations. [source]